Background: Second harmonic generation (SHG) is an intrinsic optical property of fibrillar collagen. SHG directionality is quantified by F/B, the ratio of forward- to backward-propagating signal, which is affected by collagen fiber internal structure, specifically the diameter, spacing, and disorder of fibrils within a collagen fiber. We have previously shown that F/B of primary invasive ductal carcinoma sections is prognostic of metastatic outcome. One possible cause of this relationship was revealed by our observation that tumor cells’ motility on collagen I gels varied when collagen fiber internal structure in those gels was manipulated. The mechanism by which tumor cells sense changes in collagen fiber internal structure remains unknown: here we evaluate the role of elastic modulus in the relationship between collagen fiber internal structure (as reported by F/B) and tumor cell motility. Methods: The 4T1 murine mammary adenocarcinoma, a model of metastatic triple negative breast cancer, (TNBC) and the 67NR line, a non-metastatic luminal phenotype, were introduced to a series of collagen-polyacrylamide mixed gels wherein collagen fiber internal structure and gel elastic modulus were independently controlled. F/B was measured with SHG, while elastic modulus was measured globally via rheometry and locally via atomic force microscopy (AFM). Tumor cell motility was quantified over three hours. Results: The motility of both cell lines varied with F/B while elastic modulus was held constant, and did so at two physiological modulus values. Interestingly, 4T1 cell motility increased as F/B increased, while 67NR cell motility decreased.Conclusions: Our results suggest that elastic modulus does not play a significant role in the observed relationship between collagen fiber internal structure (as reported by F/B) and tumor cell motility, for two cell lines that are models of TNBC and luminal-like breast cancer. Our observation that the two lines exhibit opposite motility trends as F/B increases is consistent with the trends in metastatic outcome versus F/B observed in our published clinical data for ER+ (i.e. containing the luminal subtypes) and ER- (i.e. containing the basal subtypes) cohorts, and suggests that a tumor’s subtype may play a role in their response to collagen fiber internal structure.
Background Second harmonic generation (SHG) is an intrinsic optical property of fibrillar collagen. SHG directionality is quantified by F/B, the ratio of forward- to backward-propagating signal, which is affected by collagen fiber internal structure, specifically the diameter, spacing, and disorder of fibrils within a collagen fiber. We have previously shown that F/B of primary invasive ductal carcinoma sections is prognostic of metastatic outcome. One possible cause of this relationship was revealed by our observation that tumor cells’ motility on collagen I gels varied when collagen fiber internal structure in those gels was manipulated. The mechanism by which tumor cells sense changes in collagen fiber internal structure remains unknown: here we evaluate the role of elastic modulus in the relationship between collagen fiber internal structure (as reported by F/B) and tumor cell motility. Methods The 4T1 murine mammary adenocarcinoma, a model of metastatic triple negative breast cancer, (TNBC) and the 67NR line, a non-metastatic luminal phenotype, were introduced to a series of collagen-polyacrylamide mixed gels wherein collagen fiber internal structure and gel elastic modulus were independently controlled. F/B was measured with SHG, while elastic modulus was measured globally via rheometry and locally via atomic force microscopy (AFM). Tumor cell motility was quantified over three hours. Results The motility of both cell lines varied with F/B while elastic modulus was held constant, and did so at two physiological modulus values. Interestingly, 4T1 cell motility increased as F/B increased, while 67NR cell motility decreased. Conclusions Our results suggest that elastic modulus does not play a significant role in the observed relationship between collagen fiber internal structure (as reported by F/B) and tumor cell motility, for two cell lines that are models of TNBC and luminal-like breast cancer. Our observation that the two lines exhibit opposite motility trends as F/B increases is consistent with the trends in metastatic outcome versus F/B observed in our published clinical data for luminal versus basal cohorts, and suggests that a tumor’s subtype may play a role in their response to collagen fiber internal structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.