An in-frame hopH gene may be linked to gastroduodenal diseases because of its association with other virulence factors or increased bacterial adherence and colonization. The strong linkage with cagA indicates that HopH may contribute to the fitness of cagA-positive strains in vivo.
Objective. While the effects of biomechanical signals in the form of joint movement and exercise are known to be beneficial to inflamed joints, limited information is available regarding the intracellular mechanisms of their actions. This study was undertaken to examine the intracellular mechanisms by which biomechanical signals suppress proinflammatory gene induction by the interleukin-1- (IL-1)-induced NF-B signaling cascade in articular chondrocytes.Methods. Primary rat articular chondrocytes were exposed to biomechanical signals in the form of cyclic tensile strain, and the effects on the NF-B signaling cascade were examined by Western blot analysis, real-time polymerase chain reaction, and immunofluorescence.Results. Cyclic tensile strain rapidly inhibited the IL-1-induced nuclear translocation of NF-B, but not its IL-1-induced phosphorylation at serine 276 and serine 536, which are necessary for its transactivation and transcriptional efficacy, respectively. Examination of upstream events revealed that cyclic tensile strain also inhibited the cytoplasmic protein degradation of IB and IB␣, as well as repressed their gene transcription. Additionally, cyclic tensile strain induced a rapid nuclear translocation of IB␣ to potentially prevent NF-B binding to DNA. Furthermore, the inhibition of IL-1-induced degradation of IB by cyclic tensile strain was mediated by down-regulation of IB kinase activity.Conclusion. These results indicate that the signals generated by cyclic tensile strain act at multiple sites within the NF-B signaling cascade to inhibit IL-1-induced proinflammatory gene induction. Taken together, these findings provide insight into how biomechanical signals regulate and reduce inflammation, and underscore their potential in enhancing the ability of chondrocytes to curb inflammation in diseased joints.
Exercise/joint mobilization is therapeutic for inflammatory joint diseases like rheumatoid and osteoarthritis, but the mechanisms underlying its actions remain poorly understood. We report that biomechanical signals at low/physiological magnitudes are potent inhibitors of inflammation induced by diverse proinflammatory activators like IL-1β, TNF-α, and lipopolysaccharides, in fibrochondrocytes. These signals exert their anti-inflammatory effects by inhibiting phosphorylation of TAK1, a critical point where signals generated by IL-1β, TNF-α, and LPS converge to initiate NF-κB signaling cascade and proinflammatory gene induction. Additionally, biomechanical signals inhibit multiple steps in the IL-1β-induced proinflammatory cascade downstream of IκB kinase activation to regulate IκBα and IκBβ degradation and synthesis, and promote IκBα shuttling to export nuclear NF-κB and terminate its transcriptional activity. The findings demonstrate that biomechanical forces are but another important signal that uses NF-κB pathway to regulate inflammation by switching the molecular activation of discrete molecules involved in proinflammatory gene transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.