Objective. While the effects of biomechanical signals in the form of joint movement and exercise are known to be beneficial to inflamed joints, limited information is available regarding the intracellular mechanisms of their actions. This study was undertaken to examine the intracellular mechanisms by which biomechanical signals suppress proinflammatory gene induction by the interleukin-1- (IL-1)-induced NF-B signaling cascade in articular chondrocytes.Methods. Primary rat articular chondrocytes were exposed to biomechanical signals in the form of cyclic tensile strain, and the effects on the NF-B signaling cascade were examined by Western blot analysis, real-time polymerase chain reaction, and immunofluorescence.Results. Cyclic tensile strain rapidly inhibited the IL-1-induced nuclear translocation of NF-B, but not its IL-1-induced phosphorylation at serine 276 and serine 536, which are necessary for its transactivation and transcriptional efficacy, respectively. Examination of upstream events revealed that cyclic tensile strain also inhibited the cytoplasmic protein degradation of IB and IB␣, as well as repressed their gene transcription. Additionally, cyclic tensile strain induced a rapid nuclear translocation of IB␣ to potentially prevent NF-B binding to DNA. Furthermore, the inhibition of IL-1-induced degradation of IB by cyclic tensile strain was mediated by down-regulation of IB kinase activity.Conclusion. These results indicate that the signals generated by cyclic tensile strain act at multiple sites within the NF-B signaling cascade to inhibit IL-1-induced proinflammatory gene induction. Taken together, these findings provide insight into how biomechanical signals regulate and reduce inflammation, and underscore their potential in enhancing the ability of chondrocytes to curb inflammation in diseased joints.
Data suggest that constant application of CTS blocks IL-1beta-induced proinflammatory genes at transcriptional level. The signals generated by CTS are sustained after its removal, and their persistence depends upon the length of CTS exposure. Furthermore, the sustained effects of mechanical signals are also reflected in their ability to induce aggrecan synthesis. These findings, once extrapolated to human chondrocytes, may provide insight in obtaining optimal sustained effects of physical therapies in the management of arthritic joints.
IntroductionThe importance of mechanical signals in normal and inflamed cartilage is well established. Chondrocytes respond to changes in the levels of proinflammatory cytokines and mechanical signals during inflammation. Cytokines like interleukin (IL)-1β suppress homeostatic mechanisms and inhibit cartilage repair and cell proliferation. However, matrix synthesis and chondrocyte (AC) proliferation are upregulated by the physiological levels of mechanical forces. In this study, we investigated intracellular mechanisms underlying reparative actions of mechanical signals during inflammation.MethodsACs isolated from articular cartilage were exposed to low/physiologic levels of dynamic strain in the presence of IL-1β. The cell extracts were probed for differential activation/inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling cascade. The regulation of gene transcription was examined by real-time polymerase chain reaction.ResultsMechanoactivation, but not IL-1β treatment, of ACs initiated integrin-linked kinase activation. Mechanical signals induced activation and subsequent C-Raf-mediated activation of MAP kinases (MEK1/2). However, IL-1β activated B-Raf kinase activity. Dynamic strain did not induce B-Raf activation but instead inhibited IL-1β-induced B-Raf activation. Both mechanical signals and IL-1β induced ERK1/2 phosphorylation but discrete gene expression. ERK1/2 activation by mechanical forces induced SRY-related protein-9 (SOX-9), vascular endothelial cell growth factor (VEGF), and c-Myc mRNA expression and AC proliferation. However, IL-1β did not induce SOX-9, VEGF, and c-Myc gene expression and inhibited AC cell proliferation. More importantly, SOX-9, VEGF, and Myc gene transcription and AC proliferation induced by mechanical signals were sustained in the presence of IL-1β.ConclusionsThe findings suggest that mechanical signals may sustain their effects in proinflammatory environments by regulating key molecules in the MAP kinase signaling cascade. Furthermore, the findings point to the potential of mechanosignaling in cartilage repair during inflammation.
Cartilage is a mechanosensitive tissue, which can means that it can perceive and respond to biomechnical signals. Despite the known importance of biomechanical signals in the etiopathogenesis of arthritic diseases, and their effectiveness in joint restoration, little is understood about their actions at the cellular level. Recent molecular approaches have revealed that specific biomechanical stimuli and cell interactions generate intracellular signals that are powerful inducers or suppressors of proinflammatory and reparative genes in chondrocytes. Biomechanical signals are perceived by cartilage in magnitude-, frequency-, and time-dependent manners. Static and dynamic biomechanical forces of high magnitudes induce proinflammatory genes and inhibit matrix synthesis. Contrarily, dynamic biomechanical signals of low/physiologic magnitudes are potent antiinflammatory signals that inhibit interleukin-1β (IL-1β)-induced proinflammatory gene transcription and abrogate IL-1β/tumor necrosis factor-α-induced inhibition of matrix synthesis. Recent studies have identified nuclear factor-κB (NF-κB) transcription factors as key regulators of biomechanical signal-mediated proinflammatory and antiinflammatory actions. These signals intercept multiple steps in the NF-κB signaling cascade to regulate cytokine gene expression. Taken together, these findings provide insight into how biomechanical signals regulate inflammatory and reparative gene transcription, underscoring their potential in enhancing the ability of chondrocytes to curb inflammation in diseased joints.
Fibrochondrocytes of meniscus adapt to changes in their biomechanical environment by mechanisms that are yet to be elucidated. In this study, the mechanoresponsiveness of fibrochondrocytes under normal and inflammatory conditions was investigated. Fibrochondrocytes from rat meniscus were exposed to dynamic tensile forces (DTF) at various magnitudes and frequencies. The mechanoresponsiveness was assessed by examining the expression of inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-alpha), and matrix metalloproteinase-13 mRNA expression. The mRNA and protein analyses revealed that DTF at magnitudes of 5% to 20% did not induce proinflammatory gene expression. IL-1beta induced a rapid increase in the iNOS mRNA. DTF strongly repressed IL-1beta-dependent iNOS induction in a magnitude-dependent manner. Exposure to 15% DTF resulted in >90% suppression of IL-1beta-induced mRNA within 4 h and this suppression was sustained for the ensuing 20 h. The mechanosensitivity of fibrochondrocytes was also frequency dependent and maximal suppression of iNOS mRNA expression was observed at rapid frequencies of DTF compared with lower frequencies. Like iNOS, DTF also inhibited IL-1beta-induced expression of proinflammatory mediators involved in joint inflammation. The examination of temporal effects of DTF revealed that 4- or 8-h exposure of DTF was sufficient for its sustained anti-inflammatory effects during the next 20 or 16 h, respectively. Our findings indicate that mechanical signals act as potent anti-inflammatory signals, where their magnitude and frequency are critical determinants of their actions. Furthermore, mechanical signals continue attenuating proinflammatory gene transcription for prolonged periods of time after their removal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.