Objective. Physiotherapies are the most widely recommended conservative treatment for arthritic diseases. The present study was undertaken to examine the molecular mechanisms underlying the effects of gentle treadmill walking (GTW) on various stages of monoiodoacetate-induced arthritis (MIA) to elucidate the basis for the success or failure of such therapies in joint damage.Methods. Knees were obtained from untreated control rats, rats with MIA that did not undergo GTW, rats with MIA in which GTW regimens were started 1 day post-MIA induction, and rats with MIA in which GTW regimens were started after cartilage damage had progressed to grade 1 or grade 2. The cartilage was examined macroscopically, microscopically, and by microfocal computed tomography imaging. Transcriptome-wide gene expression analysis was performed, and microarray data were assessed by Ingenuity Pathways Analysis to identify molecular functional networks regulated by GTW.Results. GTW intervention started on day 1 post-MIA induction significantly prevented the progression of MIA, but its efficacy was reduced when implemented on knees exhibiting close to grade 1 cartilage damage.GTW accelerated cartilage damage in knees with close to grade 2 damage. Transcriptome-wide gene expression analysis revealed that GTW intervention started 1 day post-MIA inception significantly suppressed inflammation-associated genes and up-regulated matrixassociated gene networks. However, delayed GTW intervention after grade 1 damage had occurred was less effective in suppressing proinflammatory genes or upregulating matrix synthesis.Conclusion. The present findings suggest that GTW suppresses proinflammatory gene networks and up-regulates matrix synthesis to prevent progression of cartilage damage in MIA-affected knees. However, the extent of cartilage damage at the initiation of GTW may be an important determinant of the success or failure of such therapies.
IntroductionThe importance of mechanical signals in normal and inflamed cartilage is well established. Chondrocytes respond to changes in the levels of proinflammatory cytokines and mechanical signals during inflammation. Cytokines like interleukin (IL)-1β suppress homeostatic mechanisms and inhibit cartilage repair and cell proliferation. However, matrix synthesis and chondrocyte (AC) proliferation are upregulated by the physiological levels of mechanical forces. In this study, we investigated intracellular mechanisms underlying reparative actions of mechanical signals during inflammation.MethodsACs isolated from articular cartilage were exposed to low/physiologic levels of dynamic strain in the presence of IL-1β. The cell extracts were probed for differential activation/inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling cascade. The regulation of gene transcription was examined by real-time polymerase chain reaction.ResultsMechanoactivation, but not IL-1β treatment, of ACs initiated integrin-linked kinase activation. Mechanical signals induced activation and subsequent C-Raf-mediated activation of MAP kinases (MEK1/2). However, IL-1β activated B-Raf kinase activity. Dynamic strain did not induce B-Raf activation but instead inhibited IL-1β-induced B-Raf activation. Both mechanical signals and IL-1β induced ERK1/2 phosphorylation but discrete gene expression. ERK1/2 activation by mechanical forces induced SRY-related protein-9 (SOX-9), vascular endothelial cell growth factor (VEGF), and c-Myc mRNA expression and AC proliferation. However, IL-1β did not induce SOX-9, VEGF, and c-Myc gene expression and inhibited AC cell proliferation. More importantly, SOX-9, VEGF, and Myc gene transcription and AC proliferation induced by mechanical signals were sustained in the presence of IL-1β.ConclusionsThe findings suggest that mechanical signals may sustain their effects in proinflammatory environments by regulating key molecules in the MAP kinase signaling cascade. Furthermore, the findings point to the potential of mechanosignaling in cartilage repair during inflammation.
Chronic inflammation is one of the major causes of cartilage destruction in osteoarthritis. Here, we systematically analyzed the changes in gene expression associated with the progression of cartilage destruction in monoiodoacetate-induced arthritis (MIA) of the rat knee. Sprague Dawley female rats were given intra-articular injection of monoiodoacetate in the knee. The progression of MIA was monitored macroscopically, microscopically and by micro-computed tomography. Grade 1 damage was observed by day 5 post-monoiodoacetate injection, progressively increasing to Grade 2 by day 9, and to Grade 3–3.5 by day 21. Affymetrix GeneChip was utilized to analyze the transcriptome-wide changes in gene expression, and the expression of salient genes was confirmed by real-time-PCR. Functional networks generated by Ingenuity Pathways Analysis (IPA) from the microarray data correlated the macroscopic/histologic findings with molecular interactions of genes/gene products. Temporal changes in gene expression during the progression of MIA were categorized into five major gene clusters. IPA revealed that Grade 1 damage was associated with upregulation of acute/innate inflammatory responsive genes (Cluster I) and suppression of genes associated with musculoskeletal development and function (Cluster IV). Grade 2 damage was associated with upregulation of chronic inflammatory and immune trafficking genes (Cluster II) and downregulation of genes associated with musculoskeletal disorders (Cluster IV). The Grade 3 to 3.5 cartilage damage was associated with chronic inflammatory and immune adaptation genes (Cluster III). These findings suggest that temporal regulation of discrete gene clusters involving inflammatory mediators, receptors, and proteases may control the progression of cartilage destruction. In this process, IL-1β, TNF-α, IL-15, IL-12, chemokines, and NF-κB act as central nodes of the inflammatory networks, regulating catabolic processes. Simultaneously, upregulation of asporin, and downregulation of TGF-β complex, SOX-9, IGF and CTGF may be central to suppress matrix synthesis and chondrocytic anabolic activities, collectively contributing to the progression of cartilage destruction in MIA.
SummaryDespite the fact that vocal folds are subjected to extensive mechanical forces, the role of mechanical strain in vocal fold wound healing has been overlooked. Recent studies on other tissues have demonstrated that low physiological levels of mechanical forces are beneficial to injured tissues, reduce inflammation, and induce synthesis of matrix-associated proteins essential for enhanced wound healing. In this study, we speculated that mechanical strain of low magnitudes also attenuates the production of inflammatory mediators and alters the extracellular matrix synthesis to augment wound healing in cultured vocal fold fibroblasts. To test this hypothesis, fibroblasts from rabbit vocal folds were isolated and exposed to various magnitudes of cyclic tensile strain (CTS) in the presence or absence of interleukin-1β (IL-1β). Results suggest that IL-1β activates proinflammatory gene transcription in vocal fold fibroblasts. Furthermore, CTS abrogates the IL-1β-induced proinflammatory gene induction in a magnitude-dependent manner. In addition, CTS blocks IL-1β-mediated inhibition of collagen type I synthesis, and thereby upregulates collagen synthesis in the presence of IL-1β. These findings are the first to reveal the potential utility of low levels of mechanical signals in vocal fold wound healing, and support the emerging on vivo data suggesting beneficial effects of vocal exercise on acute phonotrauma.
Although biomechanical signals generated during joint mobilization are vital in maintaining integrity of inflamed cartilage, the molecular mechanisms of their actions are little understood. In an experimental model of arthritis, we demonstrate that biomechanical signals are potent anti-inflammatory signals that repress transcriptional activation of proinflammatory genes and augment expression of anti-inflammatory cytokine IL-10 to profoundly attenuate localized joint inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.