The paper provides the investigation of a heteromodular elastic medium under dynamic loading. The heteromodularity (when the stress - strain relation depends on the deformation direction) is a distinctive feature of many natural and structural materials: rocks, porous and cohesive bulk media, fibrous and granular composites, some metal alloys, etc. The fact that the listed materials show the heteromodular property at the stage of elastic deformation should be especially taken into account when solving problems of their shock dynamics. To describe the heteromodular behavior of an elastic medium in terms of small strains we use the physically nonlinear model of V.P. Myasnikov. The accepted assumption about the one-dimensional straining reduces the nonlinear relationship of stresses and small strains to piecewise linear equations. In the case of dynamic shock deformation, the initial nonlinearity of the model is concentrated in the equations which define the velocity of the shock wave abruptly transforming the heteromodular medium from a stretched to a compressed state. In this paper we investigate the processes of generation, motion, and possible interactions of plane one-dimensional deformation waves (including shock ones) in a heteromodular elastic half-space. The points of the half-space boundary undergo one-dimensional motions according to a given non-linear law corresponding to the “stretching-compression” mode. We suggest replacing the nonstationary boundary condition of the problem by its piecewise linear approximation and constructing a connected sequence of analytical solutions with a linear boundary condition at each local time interval. The proposed approach is the basis of the numerical solving algorithm for a boundary value problem with a given nonlinear condition. It is shown that the general solution behind the shock wave consists of several local layers, which number is related to the quantity of nodes in the piecewise linear decomposition of the boundary condition. In these layers, the compression deformation is defined by the relevant part of the boundary condition and simultaneously “stores” information on the preliminary tension, which should be considered an important feature of the heteromodular medium dynamics.
Approaches to mathematical modeling of nonlinear strain dynamics in heteromodular and porous materials are discussed; the mechanical properties of media are described in terms of the simple piecewise linear elastic models. Several nonstationary 1D boundary value problems show that the singularity of model relationships gives rise to shock waves and centered Riemann waves in generalized solutions. Nonstationary load modes leading to the listed nonlinear effects are indicated separately for heteromodular and porous media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.