Social networks collected by historians or sociologists typically have a large number of actors and edge attributes. Applying social network analysis (SNA) algorithms to these networks produces additional attributes such as degree, centrality, and clustering coefficients. Understanding the effects of this plethora of attributes is one of the main challenges of multivariate SNA. We present the design of GraphDice, a multivariate network visualization system for exploring the attribute space of edges and actors. GraphDice builds upon the ScatterDice system for its main multidimensional navigation paradigm, and extends it with novel mechanisms to support network exploration in general and SNA tasks in particular. Novel mechanisms include visualization of attributes of interval type and projection of numerical edge attributes to node attributes. We show how these extensions to the original ScatterDice system allow to support complex visual analysis tasks on networks with hundreds of actors and up to 30 attributes, while providing a simple and consistent interface for interacting with network data.
Information visualization designers strive to design data displays that allow for efficient exploration, analysis, and communication of patterns in data, leading to informed decisions. Unfortunately, human judgment and decision making are imperfect and often plagued by cognitive biases. There is limited empirical research documenting how these biases affect visual data analysis activities. Existing taxonomies are organized by cognitive theories that are hard to associate with visualization tasks. Based on a survey of the literature we propose a task-based taxonomy of 154 cognitive biases organized in 7 main categories. We hope the taxonomy will help visualization researchers relate their design to the corresponding possible biases, and lead to new research that detects and addresses biased judgment and decision making in data visualization.
Fig. 1. Two viewers analyzing data visualizations from different viewpoints in front of a large high-resolution wall display (a). A participant conducting a trial during our first experiment (b).Abstract-We present the results of two user studies on the perception of visual variables on tiled high-resolution wall-sized displays. We contribute an understanding of, and indicators predicting how, large variations in viewing distances and viewing angles affect the accurate perception of angles, areas, and lengths. Our work, thus, helps visualization researchers with design considerations on how to create effective visualizations for these spaces. The first study showed that perception accuracy was impacted most when viewers were close to the wall but differently for each variable (Angle, Area, Length). Our second study examined the effect of perception when participants could move freely compared to when they had a static viewpoint. We found that a far but static viewpoint was as accurate but less time consuming than one that included free motion. Based on our findings, we recommend encouraging viewers to stand further back from the display when conducting perception estimation tasks. If tasks need to be conducted close to the wall display, important information should be placed directly in front of the viewer or above, and viewers should be provided with an estimation of the distortion effects predicted by our work-or encouraged to physically navigate the wall in specific ways to reduce judgement error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.