Several diseases would benefit from prolonged drug release provided by systems retained in the stomach for extended time periods. Expandable gastroretentive devices are administered in a collapsed configuration enabling swallowing and regain in situ their native shape having larger spatial encumbrance, thus hindering voidance through the wide open pylorus. An expandable system for gastric retention was here proposed relying on the shape memory behavior of pharmaceutical-grade poly(vinyl alcohol). Different original configurations to be recovered upon exposure to aqueous fluids at 37 °C, potentially enabling gastric retention, were conceived. Prototypes containing allopurinol were directly manufactured by fused deposition modeling or shaped by purposely-designed templates from hot melt extruded rods immediately after production. Various temporary shapes, in principle suitable for administration, were programmed by manual deformation of samples by means of specific templates, under defined temperature conditions. In 0.1N hydrochloric solution at 37 °C, the prototypes recovered their original shape, reaching the desired spatial encumbrance within few minutes. Release from the samples, although of relatively short duration, was independent of the original shape and processing undergone, and was noticeably slowed down by application of Eudragit RS/RL-based coatings.
Dry coating techniques enable manufacturing of coated solid dosage forms with no, or very limited, use of solvents. As a result, major drawbacks associated with both organic solvents and aqueous coating systems can be overcome, such as toxicological, environmental, and safety-related issues on the one hand as well as costly drying phases and impaired product stability on the other. The considerable advantages related to solventless coating has been prompting a strong research interest in this field of pharmaceutics. In the article, processes and applications relevant to techniques intended for dry coating are analyzed and reviewed. Based on the physical state of the coat-forming agents, liquid- and solid-based techniques are distinguished. The former include hot-melt coating and coating by photocuring, while the latter encompass press coating and powder coating. Moreover, solventless techniques, such as injection molding and three-dimensional printing by fused deposition modeling, which are not purposely conceived for coating, are also discussed in that they would open new perspectives in the manufacturing of coated-like dosage forms.
The feasibility of injection molding was explored in the preparation of a novel capsular device for oral pulsatile/delayed delivery based on swellable/erodible polymers. For this purpose, a mold intended to be coupled with a bench-top injection-molding press was designed. This was expected to enable the preparation of matching capsule cap and body items within a single manufacturing cycle and the selection of differing shell thicknesses (300, 600, and 900 μm). Hydroxypropylcellulose (Klucel(®) EF, LF, and GF) was employed as the release-controlling polymer in admixture with polyethylene glycol 1500 (10%, w/w) as the plasticizer. After preliminary trials aimed at the setup of operating conditions, Klucel(®) EF and LF capsule shells with satisfactory technological properties were manufactured. The performance of capsular devices filled with a tracer drug powder was studied by means of a modified USP31 disintegration apparatus. Typical in vitro delayed release patterns were thereby obtained, with lag time increasing as a function of the wall thickness. A good correlation was found between the latter parameter and t (10%), i.e., the time to 10% release, for both polymer grades employed. On the basis of the overall results, the investigated technique was proven suitable for the manufacturing of an innovative pulsatile release platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.