Biobanks are the platform for innovative biomedical research in the field of translational and personalized medicine. The important aspect for conducting large-scale research in the field of genomics, transcriptomics, proteomics is the availability of a sample information of the documented high-resolution samples. The biobanks solve the problem of forming groups of patients with different nosology within the population of interest and provide clinical and laboratory information on each sample. The aim of this article is to describe the Biobank processes of the National Medical Research Centre for Oncology within the framework of existing projects and build up collections. The review discusses the main stages of the systematized biobank process, describes the methods of sample preparation of different types of biological material, and also provides statistics of the build up collections. To this date, the predominant part of the depository consists of tissue samples of patients diagnosed with colorectal cancer 24% and stomach cancer 23% of the total number of tissue samples, while the number of tissue samples of pancreatic cancer is 10%, and esophageal cancer and breast cancer 22%. In addition to tissue samples, the biobank of the National Medical Research Centre for Oncology stores 24 cell lines of a human origin and the collection of 200 microbiota samples: 100 are from patients diagnosed with lung cancer and 100 from conditional healthy donors. Currently, the studies have been performed on biomaterial from the biobank build up collections to search for prognostic biomarkers and potential targets for targeted therapy by using high-throughput sequencing in patients diagnosed with pancreatic cancer and brain cancer. Thus, the collections play an important role for research in the field of personalized medicine, providing early diagnosis and effective treatment for each patient.
e15045 Background: Berberine is an alkaloid compound with a structure that is highly similar to that of intercalating agents. It affects numerous cell signaling pathways and is widely studied as potential anticancer drug. It is known that berberine affects cancer cells migration through metalloproteinase-2 inhibition, but this effect was never studied on glioma cells. Anti-migratory drugs are of special interest in brain cancer therapy since glioma's highly invasive nature makes total surgical removal of tumor practically impossible. The aim of the study was to evaluate berberine anti-migratory activity on glioma cells. Methods: Cell migration capacity of T98G and U87MG cell lines, as well as primary glioma cell culture established in our laboratory, was assessed via standard wound healing assay with automated image acquisition and analysis on Lionheart FX (BioTek) cell imager. Prior to assay setting up cell cultures were maintained in DMEM medium with L-glutamine (1 μM) (Gibco) and 10% FBS (Gibco) at 37C0 and 5.0% CO2. Cells were seeded at 250 000 cells per well on 24-well plates and incubated overnight in order to attach to plate bottom. After that a vertical wound was made manually in each well, and berberine was added to experimental wells to final concentration 50 mg/L. Plates with cells were continuously incubated and photographed in cell imager at 37C0 and 5.0% CO2. The extent of cells migration was measured as the percent of wound area decrease after 24 hours of incubation in relation to starting time point. Data are given as: Mean ± 95% confidence interval. Results: In our study we berberine exhibited anti-migratory activity in all cell cultures under study. In rather fast growing primary cell culture wound area decrease was 99.23%±0.62% in control sample and 91.75%±0.28% in experimental sample. The difference was small but significant at p < 0.001 level (df = 30). Popular permanent glioma cell lines T98G and U87MG showed more prominent decrease in studied parameter with higher degree of variance at the same time. In T98G wound area decrease was 71.6%±12.3% in control and 48.8%± 7.6% in experimental samples after 24 hours of cultivation in presence of 50 mg/L berberine. While U87MG demonstrated 60.28%±5.13% and 37.5%± 8.34% wound area decrease accordingly. The obtained difference between control and experimental groups in permanent cell cultures was statistically significant at the 0.05 level (df = 30). Conclusions: Our preliminary research proved berberine to be potent anti-migratory agent in glioma treatment. Further investigations are needed to evaluate its ability to inhibit glioma cell expansion in vivo.
e15508 Background: The most important stages of metastatic cascade are extravasation and invasion of malignant cells and their surviving in blood. The vast majority of circulating tumor cells (CTC) is destroyed by immune cells. The role of immune system which is able to play not only antitumor but also prooncogenic role is manifested both on local and systemic levels. We studied correlations between lymphocyte subsets` content in blood and in tumor of colorectal cancer patients (II, III, IV stages) with and without CTC. Methods: 60 colorectal cancer patients with II (n = 20), III (n = 20) and IV (n = 20) stages underwent surgery without previous chemotherapy. CTC were measured in blood by CellSearchSystem™ (JanssenDiagnostics, LLC), cell-mediated immunity was assessed in blood by flow cytometry (BD Canto II) and in tissue after surgery by immunohistochemistry; some markers of proliferation and epithelial-mesenchimal transition (EMT) in tumor cells (Ki-67, E- and N-cadherins) were also studied. Criteria of CTC-positive and CTC-negative samples were > 3 and ≤3 respectively. Correlative analysis was performed between the data of the patients with and without CTC in each stage, r was counted. Results: In CTC-positive patients with all the stages the number of strong and moderate correlations between system immunologic factors involving CD8+ appeared to be fewer than in CTC-negative ones (7 vs 19). On the contrary, the number of correlations with T regs in CTC-positive was increased: 5 vs 3 in CTC-negative patients. In patients with CTC > 3 fewer correlations were noted between factors of local and systemic immunity than in CTC-negative ones (9 vs 4 in II stage) and total disruption of all the correlations between system immunologic factors and proliferating tumor cells in III and IV stages was established. Some pathologic correlations appeared in CTC-positive patients like moderate direct one between activated T-lymphocytes` amount and Ki-67+ tumor cells. The number of correlations between intratumoral lymphocytes and tumor cells expressing proliferation and EMT markers in CTC-positive patients was decreased in comparison with CTC-negative ones (4 vs 10 in II stage, 1 vs 9 in III, 2 vs 9 in IV stage). Conclusions: The presence of CTC in colorectal cancer patients rather than tumor stage is associated with imbalance of their systemic and local immunologic factors. This provides some evidence that disruption of interactions in the immune system is at least partly due to CTC.
e15597 Background: Oncolytic virotherapy is developing intensively in modern oncology. Viruses demonstrate the ability to the direct oncolysis and to the stimulation of antitumor immune activity; this experiment was aimed at solving the question of the prevalence of one of them. Glial tumors are the most common brain tumors; oncolytic viruses show certain prospects in their treatment due to the ability to penetrate the blood-brain barrier. The aim of the study was to determine the possible oncolytic effect of new unclassified group K rotaviruses (RVK) on T98G and U87MG glioblastoma cells in vitro. Methods: T98G and U87MG cell cultures were received from Russian banks of cell lines of human and animal tissues. Standard culturing was performed with attenuated apatogenic RVK strains No. 100 and No. 228 at a concentration of 108, 107, 106 and 105 particles/mL. The cytotoxic effect was determined with MTT and Annexin V assays, cell morphology was evaluated by the light-optical method. Results: Both RVK strains demonstrated a dose-dependent cytotoxic activity; the maximal effect was observed in strain No.100 at a dose of 108 particles/mL on U87MG cells (predominantly apoptosis). Studies of cell morphology showed a pronounced effect of RVK on the cell culture: significant degenerative changes in cells, a tendency to a decrease in cluster size, a change in their shape and granularity. Cluster formation in culturing in the serum-free medium is considered in the literature as a property of cancer stem cells responsible in vivo for tumor recurrence and its chemo- and radio-resistance. T98G cells demonstrated morphological changes: nuclear segmentation, diffused cytoplasm, indistinct cell borders with signs of syncytium formation. Conclusions: The established oncolytic effect of RVK strain No. 100 in vitro on glioma cells, presumably with tumor stem cells, indicates a significant potential for the use of these rotaviruses in treatment of glial tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.