Monomers from biomass have been prepared from HMF and methylene active compounds through a one pot process using MIL-100(Fe)/TEMPO/NaNO2as the catalytic system.
Ruthenium MOF [Ru3(BTC)2Yy] ⋅ Gg (BTC=benzene‐1,3,5‐tricarboxylate; Y=counter ions=Cl−, OH−, OAc−; G=guest molecules=HOAc, H2O) is modified via a mixed‐linker approach, using mixtures of BTC and pyridine‐3,5‐dicarboxylate (PYDC) linkers, triggering structural defects at the distinct Ru2 paddlewheel (PW) nodes. This defect‐engineering leads to enhanced catalytic properties due to the formation of partially reduced Ru2‐nodes. Application of a hydrogen pre‐treatment protocol to the Ru−MOFs, leads to a further boost in catalytic activity. We study the benefits of (1) defect engineering and (2) hydrogen pre‐treatment on the catalytic activity of Ru−MOFs in the Meerwein‐Ponndorf‐Verley reaction and the isomerization of allylic alcohols to saturated ketones. Simple solvent washing could not avoid catalyst deactivation during recycling for the latter reaction, while hydrogen treatment prior to each catalytic run proved to facilitate materials recyclability with constant activity over five runs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.