Organic solar cells based on nonfullerene acceptors have recently witnessed a significant rise in their power conversion efficiency values. However, they still suffer from severe instability issues, especially in an inverted device architecture based on the zinc oxide bottom electron transport layers. In this work, we insert a pyrene-bodipy donor–acceptor dye as a thin interlayer at the photoactive layer/zinc oxide interface to suppress the degradation reaction of the nonfullerene acceptor caused by the photocatalytic activity of zinc oxide. In particular, the pyrene-bodipy-based interlayer inhibits the direct contact between the nonfullerene acceptor and zinc oxide hence preventing the decomposition of the former by zinc oxide under illumination with UV light. As a result, the device photostability was significantly improved. The π–π interaction between the nonfullerene acceptor and the bodipy part of the interlayer facilitates charge transfer from the nonfullerene acceptor toward pyrene, which is followed by intramolecular charge transfer to bodipy part and then to zinc oxide. The bodipy-pyrene modified zinc oxide also increased the degree of crystallization of the photoactive blend and the face-on stacking of the polymer donor molecules within the blend hence contributing to both enhanced charge transport and increased absorption of the incident light. Furthermore, it decreased the surface work function as well as surface energy of the zinc oxide film all impacting in improved power conversion efficiency values of the fabricated cells with champion devices reaching values up to 9.86 and 11.80% for the fullerene and nonfullerene-based devices, respectively.
As organic solar cells (OSCs) and perovskite solar cells (PVSCs) move closer to commercialization, further efforts toward optimizing both cell efficiency and stability are needed. As interfaces strongly affect device performance and degradation processes, interfacial engineering by employing various materials as hole transport layers (HTLs) and electron transport layers (ETLs) has been a very active field of research in OSCs and PVSCs. Among them, inorganic materials exhibit significant advantages in promoting device performance due to their excellent charge transporting properties and intrinsic thermal and chemical robustness. In this review, an extensive overview is provided of inorganic semiconductors such as copper‐based ones with emphasis on copper iodide and copper thiocyanate, transition metal chalcogenides, nitrides and carbides as well as hybrid materials based on these inorganic compounds that have been recently employed as HTLs and ETLs in OSCs and PVSCs. Following a short discussion of the main optoelectronic and physical properties that interfacial materials used as HTLs and ETLs should possess, the functionalities of the aforementioned materials as interfacial, charge transport, layers in OSCs and PVSCs are discussed in depth. It is concluded by providing guidelines for further developments that could significantly extend the implementation of these materials in solar cells.
Blue organic light-emitting diodes require high triplet interlayer materials, which induce large energetic barriers at the interfaces resulting in high device voltages and reduced efficiencies. Here, we alleviate this issue by designing a low triplet energy hole transporting interlayer with high mobility, combined with an interface exciplex that confines excitons at the emissive layer/electron transporting material interface. As a result, blue thermally activated delay fluorescent organic light-emitting diodes with a below-bandgap turn-on voltage of 2.5 V and an external quantum efficiency (EQE) of 41.2% were successfully fabricated. These devices also showed suppressed efficiency roll-off maintaining an EQE of 34.8% at 1000 cd m−2. Our approach paves the way for further progress through exploring alternative device engineering approaches instead of only focusing on the demanding synthesis of organic compounds with complex structures.
Textile electronics embedded in clothing represent an exciting new frontier for modern healthcare and communication systems. Fundamental to the development of these textile electronics is the development of the fibers forming the cloths into electronic devices. An electronic fiber must undergo diverse scrutiny for its selection for a multifunctional textile, viz., from the material selection to the device architecture, from the wearability to mechanical stresses, and from the environmental compatibility to the end‐use management. Herein, the performance requirements of fiber‐shaped electronics are reviewed considering the characteristics of single electronic fibers and their assemblies in smart clothing. Broadly, this article includes i) processing strategies of electronic fibers with required properties from precursor to material, ii) the state‐of‐art of current fiber‐shaped electronics emphasizing light‐emitting devices, solar cells, sensors, nanogenerators, supercapacitors storage, and chromatic devices, iii) mechanisms involved in the operation of the above devices, iv) limitations of the current materials and device manufacturing techniques to achieve the target performance, and v) the knowledge gap that must be minimized prior to their deployment. Lessons learned from this review with regard to the challenges and prospects for developing fiber‐shaped electronic components are presented as directions for future research on wearable electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.