Organic solar cells based on nonfullerene acceptors have recently witnessed a significant rise in their power conversion efficiency values. However, they still suffer from severe instability issues, especially in an inverted device architecture based on the zinc oxide bottom electron transport layers. In this work, we insert a pyrene-bodipy donor–acceptor dye as a thin interlayer at the photoactive layer/zinc oxide interface to suppress the degradation reaction of the nonfullerene acceptor caused by the photocatalytic activity of zinc oxide. In particular, the pyrene-bodipy-based interlayer inhibits the direct contact between the nonfullerene acceptor and zinc oxide hence preventing the decomposition of the former by zinc oxide under illumination with UV light. As a result, the device photostability was significantly improved. The π–π interaction between the nonfullerene acceptor and the bodipy part of the interlayer facilitates charge transfer from the nonfullerene acceptor toward pyrene, which is followed by intramolecular charge transfer to bodipy part and then to zinc oxide. The bodipy-pyrene modified zinc oxide also increased the degree of crystallization of the photoactive blend and the face-on stacking of the polymer donor molecules within the blend hence contributing to both enhanced charge transport and increased absorption of the incident light. Furthermore, it decreased the surface work function as well as surface energy of the zinc oxide film all impacting in improved power conversion efficiency values of the fabricated cells with champion devices reaching values up to 9.86 and 11.80% for the fullerene and nonfullerene-based devices, respectively.
In this study, a highly efficient photocatalytic H2 production system is developed by employing porphyrins as photocatalysts. Palladium and platinum tetracarboxyporphyrins (PdTCP and PtTCP) are adsorbed or coadsorbed onto TiO2 nanoparticles (NPs), which act as the electron transport medium and as a scaffold that promotes the self‐organization of the porphyrinoids. The self‐organization of PdTCP and PtTCP, forming H‐ and J‐aggregates, respectively, is the key element for H2 evolution, as in the absence of TiO2 NPs no catalytic activity is detected. Notably, J‐aggregated PtTCPs are more efficient for H2 production than H‐aggregated PdTCPs. In this approach, a single porphyrin, which self‐organizes onto TiO2 NPs, acts as the light harvester and simultaneously as the catalyst, whereas TiO2 serves as the electron transport medium. Importantly, the concurrent adsorption of PdTCP and PtTCP onto TiO2 NPs results in the most efficient catalytic system, giving a turnover number of 22,733 and 30.2 mmol(H2) g(cat)−1.
We report a comparison between a series of zinc and tin porphyrins as photosensitizers for photochemical hydrogen evolution using cobaloxime complexes as molecular catalysts. Among all the chromophores tested, only the positively charged zinc porphyrin, [ZnTMePyP4+]Cl4, and the neutral tin porphyrin derivatives, Sn(OH)2TPyP, Sn(Cl2)TPP-[COOMe]4, and Sn(Cl2)TPP-[PO(OEt)2]4, were photocatalytically active. Hydrogen evolution was strongly affected by the pH value as well as the different concentrations of both the sensitizer and the catalyst. A comprehensive photophysical and electrochemical investigation was conducted in order to examine the mechanism of photocatalysis. The results derived from this study establish fundamental criteria with respect to the design and synthesis of porphyrin derivatives for their application as photosensitizers in photoinduced hydrogen evolution.
In the following work, we carried out a systematic study investigating the behavior of a thiosemicarbazone-nickel (II) complex ( NiTSC-OMe ) as a molecular catalyst for photo-induced hydrogen production. A comprehensive comparison regarding the combination of three different chromophores with this catalyst has been performed, using [ Ir(ppy) 2 (bpy)]PF 6 , [Ru(bpy) 3 ]Cl 2 and [ ZnTMePy]PCl 4 as photosensitizers. Thorough evaluation of the parameters affecting the hydrogen evolution experiments (i.e., concentration, pH, solvent nature, and ratio), has been performed in order to probe the most efficient photocatalytic system, which was comprised by NiTSC-OMe and [ Ir(ppy) 2 (bpy)]PF 6 as catalyst and chromophore, respectively. The electrochemical together with the photophysical investigation clarified the properties of this photocatalytic system and allowed us to propose a possible reaction mechanism for hydrogen production.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.