Intermediate filaments (IFs) form an essential part of the metazoan cytoskeleton. Despite a long history of research, a proper understanding of their molecular architecture and assembly process is still lacking. IFs self‐assemble from elongated dimers, which are defined by their central “rod” domain. This domain forms an α‐helical coiled coil consisting of three segments called coil1A, coil1B, and coil2. It has been hypothesized that the structural plasticity of the dimer, including the unraveling of some coiled‐coil regions, is essential for the assembly process. To systematically explore this possibility, we have studied six 50‐residue fragments covering the entire rod domain of human vimentin, a model IF protein. After creating in silico models of these fragments, their evaluation using molecular dynamics was performed. Large differences were seen across the six fragments with respect to their structural variability during a 100 ns simulation. Next, the fragments were prepared recombinantly, whereby their correct dimerization was promoted by adding short N‐ or C‐terminal capping motifs. The capped fragments were subjected to circular dichroism measurements at varying temperatures. The obtained melting temperatures reveal the relative stabilities of individual fragments, which correlate well with in silico results. We show that the least stable regions of vimentin rod are coil1A and the first third of coil2, while the structures of coil1B and the rest of coil2 are significantly more robust. These observations are in line with the data obtained using other experimental approaches, and contribute to a better understanding of the molecular mechanisms driving IF assembly.
All proteins of the intermediate filament (IF) family contain the signature central α-helical domain which forms a coiled-coil dimer. Because of its length, past structural studies relied on a 'divide-and-conquer' strategy whereby fragments of this domain were recombinantly produced, crystallized and analysed using X-rays. Here we describe a further development of this approach towards structural studies of nuclear IF protein lamin. To this end, we have fused lamin A fragments to short N-and C-terminal capping motifs which provide for the correct formation of parallel, in-register coiled-coil dimers. As the result, a chimeric construct containing lamin A residues 17-70 C-terminally capped by the Eb1 domain was solved to 1.83 Å resolution. Another chimera containing lamin A residues 327-403 N-terminally capped by the Gp7 domain was solved to 2.9 Å. In the latter case the capping motif was additionally modified to include a disulphide bridge at the dimer interface. We discuss multiple benefits of fusing coiled-coil dimers with such capping motifs, including a convenient crystallographic phasing by either molecular replacement or sulphur singlewavelength anomalous dispersion (S-SAD) measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.