Given the role of intermediate filaments (IFs) in normal cell physiology and scores of IF-linked diseases, the importance of understanding their molecular structure is beyond doubt. Research into the IF structure was initiated more than 30 years ago, and some important advances have been made. Using crystallography and other methods, the central coiled-coil domain of the elementary dimer and also the structural basis of the soluble tetramer formation have been studied to atomic precision. However, the molecular interactions driving later stages of the filament assembly are still not fully understood. For cytoplasmic IFs, much of the currently available insight is due to chemical cross-linking experiments that date back to the 1990s. This technique has since been radically improved, and several groups have utilized it recently to obtain data on lamin filament assembly. Here, we will summarize these findings and reflect on the remaining open questions and challenges of IF structure. We argue that, in addition to X-ray crystallography, chemical cross-linking and cryoelectron microscopy are the techniques that should enable major new advances in the field in the near future.
All proteins of the intermediate filament (IF) family contain the signature central α-helical domain which forms a coiled-coil dimer. Because of its length, past structural studies relied on a 'divide-and-conquer' strategy whereby fragments of this domain were recombinantly produced, crystallized and analysed using X-rays. Here we describe a further development of this approach towards structural studies of nuclear IF protein lamin. To this end, we have fused lamin A fragments to short N-and C-terminal capping motifs which provide for the correct formation of parallel, in-register coiled-coil dimers. As the result, a chimeric construct containing lamin A residues 17-70 C-terminally capped by the Eb1 domain was solved to 1.83 Å resolution. Another chimera containing lamin A residues 327-403 N-terminally capped by the Gp7 domain was solved to 2.9 Å. In the latter case the capping motif was additionally modified to include a disulphide bridge at the dimer interface. We discuss multiple benefits of fusing coiled-coil dimers with such capping motifs, including a convenient crystallographic phasing by either molecular replacement or sulphur singlewavelength anomalous dispersion (S-SAD) measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.