SARS-CoV-2 negatively affects semen characteristics, impairs various biochemical processes in seminal fluid and within spermatogenic cells ultimately leading to male fertility decline. However, the distinct mechanisms, in particular, the role of oxidative stress on the consequences of coronavirus infection, have not been well investigated, which is the purpose of the present study. The standard semen parameters, its pro- and antioxidant system state, as well as the level of sperm DNA fragmentation, were assessed in 17 semen samples of men five months after the coronavirus infection and in 22 age-matched control patients. We determined that the DNA fragmentation rate negatively correlated with the period after coronavirus recovery, as well as seminal fluid superoxide dismutase activity and uric acid level. It was demonstrated that COVID-19 is not always associated with increased DNA fragmentation, allowing them to be considered as two independent factors. Thus, the most significant changes were noted in the samples of men after COVID-19 and abnormal TUNEL results: increased round cell number, decreased seminal fluid’s nitrotyrosine level, and total antioxidant capacity and Zn, as well as an increased 8-hydroxy-2′-deoxyguanosine level within spermatozoa. The data obtained indicate that increased DNA fragmentation and diminished semen quality in men can be the result of an imbalance in semen pro- and antioxidant components after COVID-19.
Maternal hyperhomocysteinemia is one of the common complications of pregnancy that causes offspring cognitive deficits during postnatal development. In this study, we investigated the effect of prenatal hyperhomocysteinemia (PHHC) on inflammatory, glial activation, and neuronal cell death markers in the hippocampus of infant rats. Female Wistar rats received L-methionine (0.6 g/kg b.w.) by oral administration during pregnancy. On postnatal days 5 and 20, the offspring’s hippocampus was removed to perform histological and biochemical studies. After PHHC, the offspring exhibited increased brain interleukin-1β and interleukin-6 levels and glial activation, as well as reduced anti-inflammatory interleukin-10 level in the hippocampus. Additionally, the activity of acetylcholinesterase was increased in the hippocampus of the pups. Exposure to PHHC also resulted in the reduced number of neurons and disrupted neuronal ultrastructure. At the same time, no changes in the content and activity of caspase-3 were found in the hippocampus of the pups. In conclusion, our findings support the hypothesis that neuroinflammation and glial activation could be involved in altering the hippocampus cellular composition following PHHC, and these alterations could be associated with cognitive disorders later in life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.