Laser Engineered Net Shaping (LENS) is an additive manufacturing technique that belongs to the ASTM standardized directed energy deposition category. To date, very limited work has been conducted towards understanding the fatigue crack growth behavior of LENS fabricated materials, which hinders the widespread adoption of this technology for high-integrity structural applications. In this study, the propagation of a 20 µm initial crack in LENS fabricated Ti-6Al-4V was captured in-situ, using highenergy synchrotron x-ray microtomography. Fatigue crack growth (FCG) data were then determined from 2D and 3D tomography reconstructions, as well as from fracture surface striation measurements using SEM. The generated data were compared to those obtained from conventional FCG tests that used compliance and direct current potential drop (DCPD) techniques to measure long and small crack growth. The observed agreement demonstrates that x-ray microtomography and fractographic analysis using SEM can be successfully combined to study the propagation behavior of fatigue cracks.
Cold-spray-processed aluminum alloys have static mechanical properties superior to those of aerospace cast alloys, and similar to those of their wrought counterparts, making them good candidates for structural applications. However, their broad and confident use relies upon systematic fatigue crack growth studies to investigate and demonstrate the materials' performance in critical high-integrity components. In this work, the fatigue crack growth behavior in early stages (small crack growth regime) was investigated for cold-spray processed 6061 aluminum alloys and coatings, at stress ratio R = 0.1, in room temperature laboratory air. The effects of the characteristic microstructure and initial flaw size on the fatigue crack growth response were systematically examined, and the crack growth mechanisms at the microstructural scale were established and compared to those of long cracks. The mechanical interfacial stability of coatings was examined in cold-spray 6061-rolled 6061-T6 couples. An original method of quantifying the deposition-substrate interfacial strength, and correlating it to the response under cyclic loading via crack-interface stability maps, was developed. The proposed methodology is based on combined scratch testing and fracture mechanics formulations, and failure at the coating-substrate interface can be predicted for any crack growth scenario under cyclic loading. The method can be broadly used for the design and optimization of cold-spray and other coatings, as well as in structural repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.