Additive manufacturing (AM) refers to an advanced technology used for the fabrication of three-dimensional near-net-shaped functional components directly from computer models, using unit materials. The fundamentals and working principle of AM offer several advantages, including near-net-shape capabilities, superior design and geometrical flexibility, innovative multimaterial fabrication, reduced tooling and fixturing, shorter cycle time for design and manufacturing, instant local production at a global scale, and material, energy, and cost efficiency. Well suiting the requests of modern manufacturing climate, AM is viewed as the new industrial revolution, making its way into a continuously increasing number of industries, such as aerospace, defense, automotive, medical, architecture, art, jewelry, and food. This overview was created to relate the historical evolution of the AM technology to its state-of-the-art developments and emerging applications. Generic thoughts on the microstructural characteristics, properties, and performance of AM-fabricated materials will also be discussed, primarily related to metallic materials. This write-up will introduce the general reader to specifics of the AM field vis-à-vis advantages and common techniques, materials and properties, current applications, and future opportunities.