Aim: The aim of this study was to develop a dual-modality positron emission tomography/magnetic resonance (PET/MR) imaging probe by radiolabeling gadolinium-containing AGuIX derivatives with the positron-emitter Gallium-68 (68Ga). Materials & methods: AGuIX@NODAGA nanoparticles were labeled with 68Ga at high efficiency. Tumor accumulation in an appropriate disease model was assessed by ex vivo biodistribution and in vivo PET/MR imaging. Results: 68Ga-AGuIX@NODAGA was proven to passively accumulate in U87MG human glioblastoma tumor xenografts. Metabolite assessment in serum, urine and tumor samples showed that 68Ga-AGuIX@NODAGA remains unmetabolized up to at least 60 min postinjection. Conclusion: This study demonstrates that 68Ga-AGuIX@NODAGA can be used as a dual-modality PET/MR imaging agent with passive accumulation in the diseased area, thus showing great potential for PET/MR image-guided radiation therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.