This study compared the O2 delivery (a central determinant of VO2) and muscle deoxygenation (reflecting a peripheral determinant of VO2) during intense continuous, long-interval, and short-interval exercise protocols. Twelve young men completed the 3 protocols with equal overall effort. Simultaneous and continuous recordings of central hemodynamics, muscle oxygenation/deoxygenation and VO2 were performed. Peak responses for stroke volume and peripheral resistance did not differ among protocols, whereas peak cardiac output and VO2 were higher in long-interval vs. continuous and short-interval protocols with inactive rest phases (p<0.05). The average responses for all central parameters were higher in continuous and long-interval vs. short-interval exercise (p<0.05); average VO2 and exercise-time above 80% VO2max were also higher in continuous and long-interval vs. short-interval protocol (p<0.05). Muscle de-oxygenation (↑Δdeoxyhemoglobin,↓Δoxyhemoglobin, ↓muscle O2-saturation), as well as the mismatch of O2 delivery and utilization (Δdeoxyhemoglobin/VO2) were remarkably alike among protocols. In conclusion, all 3 protocols resulted in a great activation of central and peripheral determinants of VO2. When performed with equal overall effort, the intense continuous and interval modalities reveal similarities in muscle O2-utilization response, but differences in central hemodynamic and VO2 responses. Intense continuous and long-interval protocols exert a more commanding role on the cardiovascular system and VO2 response compared to short-interval exercise with inactive rest phases.
Medical and sports medicine associations are reluctant to endorse isometric exercise to the same extent as dynamic resistance exercise (RE). The major concern is the fear of greater increases in blood pressure (BP) that might be associated with isometric exercise. This review comprehensively presents all human studies that directly compared the magnitude of hemodynamic responses between isometric and dynamic RE. We also discuss possible mechanisms controlling BP-response and cardiovascular adjustments during both types of RE. The most prominent finding was that isometric and dynamic RE using small-muscle mass evoke equal increases in BP; however, the circulatory adjustments contributing to this response are different in dynamic and isometric RE. In contrast, studies using large-muscle mass report inconsistent results for the magnitude of BP-response between the two types of RE. Thus, when the same muscles and workloads are used, the increase in BP during isometric and dynamic RE is more comparable to what is commonly believed. However, it should be noted that only a few studies equalized the workload in two types of RE, most used small sample sizes, and all studies employed healthy participants. More studies are needed to compare the cardiovascular risks associated with isometric and dynamic RE, especially in individuals with chronic disease.