The presence of genes encoding organellar proteins in different cellular compartments necessitates a tight coordination of expression by the different genomes of the eukaryotic cell. This coordination of gene expression is achieved by organelle-to-nucleus communication. Stress-induced perturbations of the tetrapyrrole pathway trigger large changes in nuclear gene expression. In order to investigate whether the tetrapyrrole Mg-ProtoIX itself is an important part of plastid-to-nucleus communication, we used an affinity column containing Mg-ProtoIX covalently linked to an Affi-Gel matrix. The proteins that bound to Mg-ProtoIX were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis combined with nano liquid chromatography-mass spectrometry (MS)/MS. Thus, we present a novel proteomic approach to address the mechanisms involved in cellular signaling and we identified interactions between Mg-ProtoIX and a large number of proteins associated with oxidative stress responses. Our approach revealed an interaction between Mg-ProtoIX and the heat shock protein 90-type protein, HSP81-2 suggesting that a regulatory complex including HSP90 proteins and tetrapyrroles controlling gene expression is evolutionarily conserved between yeast and plants. In addition, our list of putative Mg-ProtoIX-binding proteins demonstrated that binding of tetrapyrroles does not depend on a specific amino acid motif but possibly on a specific fold of the protein.
Treatment with the herbicide acifluorfen-sodium (AF-Na), an inhibitor of protoporphyrinogen oxidase, caused an accumulation of protoporphyrin IX (Proto IX) , light-induced necrotic spots on the cucumber cotyledon within 12-24 h, and photobleaching after 48-72 h of light exposure. Proto IX-sensitized and singlet oxygen ((1)O(2))-mediated oxidative stress caused by AF-Na treatment impaired photosystem I (PSI), photosystem II (PSII) and whole chain electron transport reactions. As compared to controls, the F(v)/F(m) (variable to maximal chlorophyll a fluorescence) ratio of treated samples was reduced. The PSII electron donor NH(2)OH failed to restore the F(v)/F(m) ratio suggesting that the reduction of F(v)/F(m) reflects the loss of reaction center functions. This explanation is further supported by the practically near-similar loss of PSI and PSII activities. As revealed from the light saturation curve (rate of oxygen evolution as a function of light intensity), the reduction of PSII activity was both due to the reduction in the quantum yield at limiting light intensities and impairment of light-saturated electron transport. In treated cotyledons both the Q (due to recombination of Q(A)(-) with S(2)) and B (due to recombination of Q(B)(-) with S(2)/S(3)) band of thermoluminescence decreased by 50% suggesting a loss of active PSII reaction centers. In both the control and treated samples, the thermoluminescence yield of B band exhibited a periodicity of 4 suggesting normal functioning of the S states in centers that were still active. The low temperature (77 K) fluorescence emission spectra revealed that the F(695) band (that originates in CP-47) increased probably due to reduced energy transfer from the CP47 to the reaction center. These demonstrated an overall damage to the PSI and PSII reaction centers by (1)O(2) produced in response to photosensitization reaction of protoporphyrin IX in AF-Na-treated cucumber seedlings.
Stroma, envelope and thylakoid membranes were prepared from chloroplasts isolated from leaves of Beta vulgaris. Out of total plastidic protochlorophyllide, envelope membranes contained 1.5%, thylakoids had the maximum 98.48% and stroma had a trace fraction of 0.02%. Distribution of the Mg-protoporphyrin IX and its monoester was 89.0% in thylakoids, 10.0% in stroma and 1.0% in envelope. A substantial fraction (33.77%) of plastidic protoporphyrin IX was partitioned into stroma. Envelope contained 0.66% and thylakoids had 65.57% of the total plastidic protoporphyrin IX pool. The proportion of monovinyl and divinyl forms of protochlorophyllide was almost similar in intact plastid, thylakoids, and outer and inner envelope membranes suggesting a tight regulation of vinyl reductase enzyme. The significance of differential distribution of chlorophyll biosynthetic intermediates among thylakoids, envelope and stroma is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.