Abstract-Biomedical systems often require several kb of embedded memory and are typically operated in the subthreshold (sub-VT) domain for good energy-efficiency. Embedded memories and their leakage current can easily dominate the overall silicon area and the total power consumption, respectively. Gain-cell based embedded DRAM arrays provide a high-density, lowleakage alternative to SRAM for such systems; however, they are typically designed for operation at nominal or only slightly scaled supply voltages. For the first time, this paper presents a gain-cell array which is fully functional in the sub-VT regime and achieves a data retention time that is more than 10 4 times higher than the access time. Monte Carlos simulations show that the 2 kb gaincell array, implemented in a mature 0.18 µm CMOS node and supplied with a sub-VT voltage of 400 mV, exhibits robust write and read operations at 500 kHz under parametric variations and has over 99% availibilty for read and write access.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.