The effects of presowing treatment of red clover seeds with cold plasma (5 and 7 min) and electromagnetic field (10 and 15 min) on plant agronomic performance were studied. Seed treatments stimulated germination and this effect correlated with changes in the balance of seed phytohormones: a decreased amount of abscisic acid and an increased gibberellin/abscisic acid ratio. Experiments performed in rhizoboxes revealed that seed treatments stimulated root growth and root nodulation. Stressor and dose‐specific changes in the amounts of flavonoids important for communication with nitrogen‐fixing strains of rhizobacteria were detected in the root exudates. The results suggest that besides changes in plant's internal processes, the response of plants to seed treatment involves beneficial modulation of plant communication with microorganisms.
The aim of this study was to determine the effects of pre-sowing seed treatment with cold plasma (CP) and an electromagnetic field (EMF) on the agricultural performance of two cultivars of common buckwheat (Fagopyrum esculentum Moench)—‘VB Vokiai’ and ‘VB Nojai’. For this, the effects of CP and EMF on seed germination, plant growth in the field, photosynthetic efficiency, biomass production, seed yield, and the amount of secondary metabolites and minerals in the harvested seeds were estimated. Although the percentage of seedlings that emerged under field conditions decreased by 11–20%, seed treatments strongly improved buckwheat growth and yield. Irrespective of differences in the dynamics of changes in the growth and photosynthetic activity between the two cultivars, the weight of seeds collected per plant for both cultivars was significantly higher (up to 70–97%) compared to the control. The biochemical composition of the harvested seeds (Fe, Zn, quercetin content) was also altered by seed treatments. Thus, pre-sowing treatment of buckwheat seeds with CP and EMF substantially stimulated plant growth in the field, increased biomass production, seed yield and nutritional quality. The results obtained strongly support the idea that plant seed treatment with physical stressors has great potential for use in agriculture.
Among the innovative technologies being elaborated for sustainable agriculture, one of the most rapidly developing fields relies on the positive effects of non-thermal plasma (NTP) treatment on the agronomic performance of plants. A large number of recent publications have indicated that NTP effects are far more persistent and complex than it was supposed before. Knowledge of the molecular basis and the resulting outcomes of seed treatment with NTP is rapidly accumulating and requires to be analyzed and presented in a systematic way. This review focuses on the biochemical and physiological processes in seeds and plants affected by seed treatment with NTP and the resulting impact on plant metabolism, growth, adaptability and productivity. Wide-scale changes evolving at the epigenomic, transcriptomic, proteomic and metabolic levels are triggered by seed irradiation with NTP and contribute to changes in germination, early seedling growth, phytohormone amounts, metabolic and defense enzyme activity, secondary metabolism, photosynthesis, adaptability to biotic and abiotic stress, microbiome composition, and increased plant fitness, productivity and growth on a longer time scale. This review highlights the importance of these novel findings, as well as unresolved issues that remain to be investigated.
In this study, the effects of seed treatments with different stressors, such as cold plasma (CP), a vacuum and an electromagnetic field (EMF), on the in vitro germination of industrial hemp cv. Futura 75 were compared with the effects on germination in the field, plant growth, and the amount of major cannabinoids in the leaves and inflorescences of female plants. CP and EMF (but not vacuum) treatments improved in vitro seed germination, but had no impact on germination in the field. EMF treatment increased the weight of the above-ground part of male and female plants grown for 4 months by 65–70% and the number of female inflorescences by 70%. CP stimulated the growth of male plants (weight increased 1.4 times) but reduced the growth of female plants. Vacuum treatment did not induce changes in the growth of female and male plants. Vacuum and EMF treatments did not change the amount of cannabidiolic acid (CBDA), but CP decreased the CBDA content in hemp leaves by 41%. Vacuum treatment increased the amount of CBDA in female plant inflorescences by 26%. Thus, hemp seed treatment with EMF has a potential application for increasing the biomass of female plants. CP treatment can be used to increase male plant production while vacuum treatment can stimulate CBD production.
The effects of presowing seed treatment with cold plasma (CP) on seedling growth during the first two vegetation seasons and their ability to synthesize phenolic compounds and photosynthetic pigments were compared in seedlings from seven spruce half‐sib families. Seeds were treated with atmospheric dielectric barrier discharge plasma for 1 and 2 min. The results revealed that CP treatment‐induced changes in the tested morphometric and biochemical parameters were strongly dependent on the genotype. The family 477 most positively responded to CP treatments and displayed accelerated growth, combined with a strong increase in pigment and total phenolic content. CP treatment was least effective in families 541, 577, and 599, whereas the response in families 457, 463, and 548 was ranked as intermediate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.