Purpose: To analyze the factors affecting pressure distribution from ground construction on subway tunnel linings. Method: Mathematical modeling by finite element method of a system that includes a soil massif, an interstation tunnel lining and a load from ground building foundation. Results: The type of additional pressure distribution graph from ground construction inviolate massif and in the massif, which stress-strain state is distorted by tunneling, is established. It is found that the change of additional pressure is directly proportional to load change as by depth as well as by distance from foundation axis; this law is preserved at any other parameter change (in inviolate soil massif and in the massif which stress-strain state is changed by tunneling, at various ways of tunneling modeling, at the use of various geomechanical soil models). It is established that the value of additional pressure from ground construction practically doesn’t depend on tunneling modeling method. The difference between the results at soil description via Mohr-Coulomb model and via its modification is substantiated. Practical importance: It is shown the possibility to determine accurately the amount of additional pressure from ground construction on tunnel lining without having information on tunneling method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.