The temperature dependencies (range: 5-45 degrees C) of single-channel proton conductances (g(H)) in native gramicidin A (gA) and in two diastereoisomers (SS and RR) of the dioxolane-linked gA channels were measured in glycerylmonooleate/decane (GMO) and diphytanoylphosphatidylcholine/decane (DiPhPC) bilayers. Linear Arrhenius plots (ln (g(H)) versus K(-1)) were obtained for the native gA and RR channels in both types of bilayers, and for the SS channel in GMO bilayers only. The Arrhenius plot for proton transfer in the SS channel in DiPhPC bilayers had a break in linearity around 20 degrees C. This break seems to occur only when protons are the permeating cations in the SS channel. The activation energies (E(a)) for proton transfer in various gA channels (approximately 15 kJ/mol) are consistent with the rate-limiting step being in the channel and/or at the membrane-channel/solution interface, and not in bulk solution. E(a) values for proton transfer in gA channels are considerably smaller than for the permeation of nonproton currents in gA as well as in various other ion channels. The E(a) values for proton transfer in native gA channels are nearly the same in both GMO and DiPhPC bilayers. In contrast, for the dioxolane linked gA dimers, E(a) values were strongly modulated by the lipid environment. The Gibbs activation free energies (Delta G(#)(o)) for protons in various gA channels are within the range of 27-29 kJ/mol in GMO bilayers and of 20-22 kJ/mol in DiPhPC bilayers. The largest difference between Delta G(#)(o) for proton currents occurs between native gA (or SS channels) and the RR channel. In general, the activation entropy (Delta S) is mostly responsible for the differences between g(H) values in various gA channels, and also in distinct bilayers. However, significant differences between the activation enthalpies (Delta H(#)(o)) for proton transfer in the SS and RR channels occur in distinct membranes.
The two long-known "classical" enzymes of uridyl-5-methylation, thymidylate synthase and ribothymidyl synthase, have been joined by two alternative methylation enzymes, flavin-dependent thymidylate synthase and folate-dependent ribothymidyl synthase. These two newly discovered enzymes have much in common: both contain flavin cofactors, utilize methylenetetrahydrofolate as a source of methyl group, and perform thymidylate synthesis via chemical pathways distinct from those of their classic counterparts. Several severe human pathogens (e.g., typhus, anthrax, tuberculosis, and more) depend on these "alternative" enzymes for reproduction. These and other distinctive properties make the alternative enzymes and their corresponding genes appealing targets for new antibiotics.
New findings lead to a revised understanding of the substrates' binding order, the role of the substrate as an activator, and the observed lag phase in the FDTS catalyzed reaction.
Flavin‐dependent thymidylate synthases (FDTS) catalyze the production of dTMP from dUMP and N5,N10‐methylene‐5,6,7,8‐tetrahydrofolate (CH2H4folate). In contrast to human and other classical thymidylate synthases, the activity of FDTS depends on a FAD coenzyme, and its catalytic mechanism is very different. Several human pathogens rely on this recently discovered enzyme, making it an attractive target for novel antibiotics. Like many other flavoenzymes, FDTS can function as an oxidase, which catalyzes the reduction of O2 to H2O2, using reduced NADPH or other reducing agents. In this study, we exploit the oxidase activity of FDTS from Thermatoga maritima to probe the binding and release features of the substrates and products during its synthase activity. Results from steady‐state and single‐turnover experiments suggest a sequential kinetic mechanism of substrate binding during FDTS oxidase activity. CH2H4folate competitively inhibits the oxidase activity, which indicates that CH2H4folate and O2 compete for the same reduced and dUMP‐activated enzymatic complex (FDTS–FADH2–NADP+–dUMP). These studies imply that the binding of CH2H4folate precedes NADP+ release during FDTS activity. The inhibition constant of CH2H4folate towards the oxidase activity was determined to be rather small (2 μm), which indicates a tight binding of CH2H4folate to the FDTS–FADH2–NADP+–dUMP complex.
The transfer of protons in water wires was studied in native gramicidin A (gA), and in the SS- and RR-diastereoisomers of dioxolane-linked gA channels (SS and RR channels). These peptides were incorporated into membranes comprised of distinct combinations of phospholipid headgroups and acyl chains. Quantitative relationships between single channel conductances to H+ (g(H)) and [H+] were determined in distinct phospholipid membranes, and are in remarkable contrast with results previously obtained in monoglyceride membranes. In particular: 1), g(H)-[H+] relationships for the various gA channels in distinct phospholipid membranes are well fitted by single adsorption isotherms. A simple kinetic model assuming mono-occupancy of channels by protons fits said relationships. This does not occur with monoglyceride membranes. 2), Under nonsaturating [H+], g(H) is approximately 1 order of magnitude larger in phospholipid than in monoglyceride membranes. 3), Differences between rates of H+ transfer in various gA channels are still present but considerably attenuated in phospholipid relative to monoglyceride membranes. 4), Charged phospholipid headgroups affect g(H) via changes in [H+] at the membrane/solution interfaces. 5), Phosphoethanolamine groups caused a marked attenuation of g(H) relative to membranes with other phospholipid headgroups. This attenuation is voltage-dependent and tends to saturate H+ currents at voltages larger than 250 mV. This effect is likely to occur by limiting the access and exit of H+ in and out of the channel due to relatively strong oriented H-bonds between waters and phosphoethanolamine groups at channel interfaces. The differential effects of phospholipids on proton transfer could be reasoned by considering solvation effects of side chain residues of gramicidin channels by double acyl chains and by the presence of polar headgroups facilitating the entrance/exit of protons through the channel mouths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.