BackgroundRecent progress in sequencing and 3 D structure determination techniques stimulated development of approaches aimed at more precise annotation of proteins, that is, prediction of exact specificity to a ligand or, more broadly, to a binding partner of any kind.ResultsWe present a method, SDPclust, for identification of protein functional subfamilies coupled with prediction of specificity-determining positions (SDPs). SDPclust predicts specificity in a phylogeny-independent stochastic manner, which allows for the correct identification of the specificity for proteins that are separated on a phylogenetic tree, but still bind the same ligand. SDPclust is implemented as a Web-server http://bioinf.fbb.msu.ru/SDPfoxWeb/ and a stand-alone Java application available from the website.ConclusionsSDPclust performs a simultaneous identification of specificity determinants and specificity groups in a statistically robust and phylogeny-independent manner.
We present a novel notion of binding site local similarity based on the analysis of complete protein environments of ligand fragments. Comparison of a query protein binding site (target) against the 3D structure of another protein (analog) in complex with a ligand enables ligand fragments from the analog complex to be transferred to positions in the target site, so that the complete protein environments of the fragment and its image are similar. The revealed environments are similarity regions and the fragments transferred to the target site are considered as binding patterns. The set of such binding patterns derived from a database of analog complexes forms a cloud-like structure (fragment cloud), which is a powerful tool for computational drug design. It has been shown on independent test sets that the combined use of a traditional energy-based score together with the cloud-based score responsible for the quality of embedding of a ligand into the fragment cloud improves the self-docking and screening results dramatically. The usage of a fragment cloud as a source of positioned molecular fragments fitting the binding protein environment has been validated by reproduction of experimental ligand optimization results.
The problem of reconstructing of a symbol string given the data about precedence of fixed length substrings arises in the method of nucleic acid sequencing by nested strand hybridization. We reformulate the problem in the graph-theoretical terms, describe the structure of the set of solutions, and present polynomial time algorithms that check existence and uniqueness of a solution or finiteness of the solution set, and then construct the solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.