The jetting phenomenon associated with droplet impact upon a hydrophilic micropillared substrate was analyzed in detail using a high-speed camera. Viscosities of the fluids were varied using differing concentrations of glycerol in deionized water. This paper aims to connect similarities between this form of capillary jetting and another well-known jetting phenomenon from the bubble bursting. Both experience a cavity collapse when opposing fluid fronts collide which causes a singularity at the liquid surface, thus leading to the occurrence of jetting. Following processes used to define scaling laws for bubble bursting, a similar approach was taken to derive scaling laws for the dimensionless jet height, jet radius, base height, and radius of the jet base with respect to dimensionless time for the jetting phenomenon associated with the droplet impact. The development of a top droplet before the breakup of the jet also allows the examination of a scaling law for the necking diameter. We find that with the proper scaling factors, the evolution of the jet profile can collapse into a master profile for different fluids and impact velocities. The time dependence of the necking diameter before the jet breakup follows the power law with an exponent of ~2/3. Contrastingly, for other jet parameters such as the radius and height, the power law relationship with time dependence was not found to have a clear pattern that emerged from these studies.
Droplet-wall impacts are well known to produce a wide variety of outcomes such as spreading, splashing, jetting, receding, and rebounding from hydrophobic and superhydrophobic surfaces. In this work, we focus on the growth of jets that form during the partial recoil of liquid droplets that impinge upon hydrophilic substrates composed of cylindrical micro-pillars of various dimensions and distributions (i.e., height, width, pillar spacing, etc.). Micro-pillars are fabricated on the hydrophilic silicon wafers by standard microfabrication processes, including metal etch mask patterning by photolithography, metal deposition, and lift-off to achieve the designed pillar shapes and spacing, and followed by dry etching for various pillar heights. Micrometer-sized drops of glycerol mixtures impacting micro-structured wafers are investigated using high-speed video photography. Impact velocities are varied to observe the influence of Weber number on the dynamic properties of the rebounding jet and jet initiation time, as well as whether or not the jet detaches ejecting satellite droplets normal to the substrate surface. The specific influence of the micro-patterned surfaces on maximum spreading, jet formation, jet tip velocity, and jet ejection is characterized. We find that the micro-patterned substrates have a significant effect on the behavior of the drop impact and jetting mechanism. From our experiments, we find that jet velocity is approximately 4 times that of the drop impact velocity. The jet formation time is shown to follow the capillary time scale as (ρDi3/σ)½ (where ρ, Di, and σ are density, initial droplet diameter, and surface tension, respectively).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.