Bio-organic, as one of the sustainable and bioresorbable materials, has been used as an active thin film in producing resistive switching random access memory (RRAM) due to its specialized properties. This type of nonvolatile memory consists of a simple unit structure with the processed and solidified bio-organic-based thin film sandwiched between two electrodes. Its memory characteristics are significantly affected by the resistive-switching mechanism. However, to date, the reported mechanisms are very diverse and scattered, and to our best knowledge, there is no literature that reviewed comprehensively the mechanisms of resistive switching in bio-organic-based thin films. Therefore, the objective of this article is to critically analyze data related to the mechanisms of the bio-organic-based RRAM since it was first reported. Based on the pool of literature, three types of mechanisms are categorized, namely electronic, electrochemical, and thermochemical, and the naming is well justified based on the principle of operation. The determining factors and roles of bio-organic material and the two electrodes in governing the three mechanisms have been analyzed, reviewed, discussed, and compared.
Resistive switching is a promising technology for artificial synapses, the most critical component and building block of a neural network for brain-inspired neuromorphic computing. The artificial synapse is capable of emulating a signal process and memory functions of biological synapses. The artificial synapse fabricated by natural bioorganic materials is essential for developing soft, flexible, and biocompatible electronics and sustainable, biodegradable, and environmentally friendly neuromorphic systems. In this work, a natural biomaterial—honey based resistive switching device—was demonstrated to emulate some important functionalities of biological synapses, including synaptic potentiation and depression, short-term and long-term memory, spatial summation, and shunting inhibition. The results indicate the potential of honey based resistive switching for artificial synaptic devices in renewable neuromorphic systems and bioelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.