The present work aimed to study the culturable diversity of psychrotolerant bacteria persistent in soil under overwintering conditions, evaluate their ability to sustain plant growth and alleviate chilling stress in tomato. Psychrotolerant bacteria were isolated from agricultural field soil samples colleced during winter and then used to study chilling stress alleviation in tomato plants (Solanum lycopersicum cv Mill). Selective isolation after enrichment at 5°C yielded 40 bacterial isolates. Phylogenetic studies indicated their distribution in genera Arthrobacter, Flavimonas, Flavobacterium, Massilia, Pedobacter and Pseudomonas. Strains OS211, OB146, OB155 and OS261 consistently improved germination and plant growth when a chilling stress of 15°C was imposed and therefore were selected for pot experiments. Tomato plants treated with the selected four isolates exhibited significant tolerance to chilling as observed through reduction in membrane damage and activation of antioxidant enzymes along with proline synthesis in the leaves when exposed to chilling temperature conditions (15°C). Psychrotolerant physiology of the isolated bacteria combined with their ability to improve germination, plant growth and induce antioxidant capacity in tomato plants can be employed to protect plants against chilling stress.
Studies on chilling stress damage and its mitigation through microorganisms in members of family Solanaceae is limited, despite their economic importance. We studied chilling stress alleviation in tomato plants colonized by psychrotolerant bacterial strains Pseudomonas vancouverensis OB155-gfp and P. frederiksbergensis OS261-gfp. Log phase cultures of bacterial strains were coated on surface-sterilized seeds (bacterization) before sowing and nonbacterized (control) seeds were coated with sterile bacterial growth medium. All plants were grown at temperatures of 30 and 25°C and at the end of 4 weeks, chilling treatment (12 and 10°C) was imposed for 1 week on half of the bacterized and control plants. Under normal conditions (30 and 25°C), no significant difference was observed in antioxidant activity, proline accumulation, and expression of cold acclimation genes in tomato leaf tissues of both control and bacterized plants. However, plants exposed to temperatures of 12 and 10°C were found to decrease in robustness and nutrient uptake, accompanied by increased membrane damage. Chilling resistance in bacterized plants was evident from reduced membrane damage and reactive oxygen species levels, improved antioxidant activity in leaf tissues, and high expression of cold acclimation genes LeCBF1 and LeCBF3 compared with control plants. Confocal microscopy confirmed effective colonization and intercellular localization of cold-adapted bacterial strains OB155-gfp and OS261-gfp.
The unicellular marine alga Dunaliella salina is a most interesting green cell factory for the production of carotenes and lipids under extreme environment conditions. However, the culture conditions and their productivity are the major challenges faced by researchers which still need to be addressed. In this study, we investigated the effect of bicarbonate amendment on biomass, photosynthetic activity, biochemical constituents, nutrient uptake and antioxidant response of D. salina during macronutrient deficit conditions (N−, P− and S−). Under nutrient deficit conditions, addition of sodium bicarbonate (100 mM) significantly increased the biomass, carotenoids including β-carotene and lutein, lipid, and fatty acid content with concurrent enhancement of the activities of nutrient assimilatory and carbonic anhydrase enzymes. Maximum accumulation of carotenoid especially β-carotene (192.8 ± 2.11 µg/100 mg) and lipids (53.9%) was observed on addition of bicarbonate during nitrate deficiency compared to phosphate and sulphate deficiency. Supplementation of bicarbonate reduced the oxidative stress caused by ROS, lowered lipid peroxidation damage and improved the activities of antioxidant enzymes (SOD, CAT and APX) in D. salina cultures under nutrient stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.