The present review provides a summary of recent evidence of sortilin expression, function, and regulation and its implications in lipid metabolism and development of lipid disorder diseases. As a member of the vacuolar protein sorting 10 protein (Vps10p) receptor family, sortilin mediates intracellular trafficking of diverse endogenous or exogenous protein substrates between the trans-Golgi network (TGN) and plasma membrane compartments. Recent studies reveal that sortilin regulates the expression of lipid genes, plasma lipid level, and the development of lipid disorder diseases. Sortilin promotes atherogenesis by regulating hepatic very low density lipoprotein (VLDL) secretion and plasma lipid level and subsequently macrophage lipid accumulation. Sortilin deficiency is caused by accelerated proteasome degradation under insulin resistance conditions and is thereby implicated in the hyperlipidemia of type 2 diabetes mellitus (T2DM). Sortilin facilitates hepatic cholesterol accumulation by inhibiting hepatic cholesterol catabolism, which promotes the development of nonalcoholic fatty liver disease (NAFLD). Sortilin plays an important role in lipid metabolism and represents a promising therapeutic target for lipid disorder diseases.
The organelle of eukaryotes is a finely regulated system. Once disturbed, it activates the specific autoregulatory systems, namely, organelle autoregulation.Among which, the Golgi stress response accounts for one. When the abundance and capacity of the Golgi apparatus are insufficient compared with cellular demand, the Golgi stress response is activated to enhance the function of the Golgi apparatus. Although the molecular mechanism of the Golgi stress response has not been well characterized yet, it seems to be an important part of the mammalian stress response. In this review, we discuss the current status of research on the six pathways of the mammalian Golgi stress response (the TFE3, heat shock protein 47, CREB3, E26 transformation specific, proteoglycan, and mucin pathways), which regulate the general function of the Golgi apparatus, anti-apoptosis, pro-apoptosis, proteoglycan glycosylation, and mucin glycosylation, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.