Cleavage of the Se-Se bond in [2-{O(CH(2)CH(2))(2)NCH(2)}C(6)H(4)](2)Se(2) (1) and [2-{MeN(CH(2)CH(2))(2)NCH(2)}C(6)H(4)](2)Se(2) (2) by treatment with SO(2)Cl(2), bromine or iodine (1 : 1 molar ratio) yielded [2-{O(CH(2)CH(2))(2)NCH(2)}C(6)H(4)]SeX [X = Cl (3), Br (4), I (5)] and [2-{MeN(CH(2)CH(2))(2)NCH(2)}C(6)H(4)]SeI (6). The compounds were characterized in solution by NMR spectroscopy (1H, 13C, 15N, 77Se, 2D experiments). The solid-state molecular structures of 1-3, 4.HBr, 5 and 6 were established by single crystal X-ray diffraction. In all cases T-shaped coordination geometries, i.e. (C,N)SeSe (1, 2), (C,N)SeX (3, 5, 6; X = halogen) or CSeBr(2) (4.HBr), were found. Supramolecular associations in crystals based on hydrogen contacts are discussed.
The reaction of RH (1) with Hg(OAc)(2), in EtOH, gave the acetate RHgOAc (2) [R = 2,6-[O(CH(2)CH(2))(2)NCH(2)](2)C(6)H(3)]. The corresponding RHgCl (3) was obtained from 2 and LiCl. The reaction of 3 with TeCl(4) (1:1 molar ratio), in anhydrous 1,4-dioxane, resulted in the transfer of the organic ligand from mercury to tellurium and the isolation of the unexpected ionic compounds [RTe](2)[Hg(2)Cl(6)] (4) and [RH(3)][HgCl(4)] (5). The molecular structures of 1-4 and 5·H(2)O were established by single-crystal X-ray diffraction. The acetate 2 and the chloride 3 are monomeric in solid state. In both mercury and tellurium organometallic compounds the organic group acts as an (N,C,N) "pincer" ligand. This coordination pattern provided stability for the rare [RTe](+) cation. Weak cation-anion interactions [Te···Cl 3.869(3) Å] are present between [RTe](+) and the dinuclear anion [Hg(2)Cl(6)](2-) in the crystal of 4. Theoretical calculations with DFT methods were performed for models of 3 and 4. The results show that in the cation of 4 the coordination of the nitrogen atoms play an important role for the stabilization of the structure found in the crystal whereas in 3 the coordination of the nitrogen atoms to the metal centre stabilizes to a less extent the structure found in solid state.
Triorganotelluronium halides of type [{2-(Me2NCH2)C6H4}nPh3−nTe]+X− (n = 1–3, X = Cl, Br, I) were prepared and structurally characterized both in solution and in the solid state, showing a (C,N)-chelating behavior of the 2-(Me2NCH2)C6H4 groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.