We unveiled the effect of doping on the morpho-structural and opto/electrical properties of Ca-doped ZnO:Al thin films obtained by RF magnetron sputtering. Scanning electron microscopy (SEM) was performed to reveal the surface morphology, while the composition and crystal structure were investigated by energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The correlation between the microstructure and the electrical conductivity identifies an increase in electrical conductivity up to 145 × 10−3 Ω−1·m−1 at 5 wt.% Ca doping level with the decrease in the grain size. Furthermore, the presence of Ca dopant triggers the occurrence of the emission peak at 430 nm and an increase of the green emission peak in PL spectra. Corroborating the electrical measurements with X-ray diffraction and optical measurements, one can infer that the electrical conductivity is dominated by intrinsic defects developed during deposition and by the existence of dopants.
In this review, we highlight recent advancements in 3D graphene foam synthesis by template-assisted chemical vapor deposition, as well as their potential energy storage and conversion applications. This method offers good control of the number of graphene layers and porosity, as well as continuous connection of the graphene sheets. The review covers all the substrate types, catalysts, and precursors used to synthesize 3D graphene by the CVD method, as well as their most viable energy-related applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.