A structure is worth a thousand words: Guided by the X‐ray structure of an S‐selective artificial transfer hydrogenase, designed evolution was used to optimize the selectivity of hybrid catalysts. Fine‐tuning of the second coordination sphere of the ruthenium center (see picture, orange sphere) by introduction of two point mutations allowed the identification of selective artificial transfer hydrogenases for the reduction of dialkyl ketones.
Incorporation of biotinylated racemic three-legged d6-piano stool complexes in streptavidin yields enantioselective transfer hydrogenation artificial metalloenzymes for the reduction of ketones. Having identified the most promising organometallic catalyst precursors in the presence of wild-type streptavidin, fine-tuning of the selectivity is achieved by saturation mutagenesis at position S112. This choice for the genetic optimization site is suggested by docking studies which reveal that this position lies closest to the biotinylated metal upon incorporation into streptavidin. For aromatic ketones, the reaction proceeds smoothly to afford the corresponding enantioenriched alcohols in up to 97% ee (R) or 70% (S). On the basis of these results, we suggest that the enantioselection is mostly dictated by CH/pi interactions between the substrate and the eta6-bound arene. However, these enantiodiscriminating interactions can be outweighed in the presence of cationic residues at position S112 to afford the opposite enantiomers of the product.
Nature's catalysts are specifically evolved to carry out efficient and selective reactions. Recent developments in biotechnology have allowed the rapid optimization of existing enzymes for enantioselective processes. However, the ex nihilo creation of catalytic activity from a noncatalytic protein scaffold remains very challenging. Herein, we describe the creation of an artificial enzyme upon incorporation of a vanadyl ion into the biotin-binding pocket of streptavidin, a protein devoid of catalytic activity. The resulting artificial metalloenzyme catalyzes the enantioselective oxidation of prochiral sulfides with good enantioselectivities both for dialkyl and alkyl-aryl substrates (up to 93% enantiomeric excess). Electron paragmagnetic resonance spectroscopy, chemical modification, and mutagenesis studies suggest that the vanadyl ion is located within the biotin-binding pocket and interacts only via second coordination sphere contacts with streptavidin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.