Multiwalled carbon nanotubes (MWCNTs) were grown on the fibers of a commercial porous carbon paper used as carbon-collecting electrodes in fuel cells. The tubes were then covered with Pt nanoparticles in order to test these gas diffusion electrodes (GDEs) for oxygen reduction in H2SO4 solution and in H2/O2 fuel cells. The Pt nanoparticles were characterized by cyclic voltammetry, transmission electron microscopy, and X-ray photoelectron spectroscopy. The majority of the Pt particles are 3 nm in size with a mean size of 4.1 nm. They have an electrochemically active surface area of 60 m2/g Pt for Pt loadings of 0.1-0.45 mg Pt/cm2. Although the electroactive Pt surface area is larger for commercial electrodes of similar loadings, Pt/MWCNT electrodes largely outperform the commercial electrode for the oxygen reduction reaction in GDE experiments using H2SO4 at pH 1. On the other hand, when the same electrodes are used as the cathode in a H2/O2 fuel cell, they perform only slightly better than the commercial electrodes in the potential range going from approximately 0.9 to approximately 0.7 V and have a lower performance at lower voltages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.