Complex coacervation core micelles were prepared with various polyelectrolytes and oppositely charged diblock copolymers. The diblock copolymers consist of a charged block and a water-soluble neutral block. Our experimental technique was dynamic light scattering in combination with titrations. At mixing ratios where the excess charge of the polyelectrolyte mixture is approximately zero, micelles may be formed. The colloidal stability of these micelles depends on the block lengths of the diblock copolymers and the molecular weight of the homopolymers. In addition, the chemical nature of the corona blocks and nature of the ionic groups of the polyelectrolytes also influence the stability and aggregation mechanism. A corona block that is three times longer than the core block is a prerequisite for stable micelles. If this ratio is further increased, the molecular weight of the homopolymers as well as the type of the ionic groups starts to play a major role. With very asymmetric block length ratios, no micelles are formed. In addition, if the neutral block is too short, the polymeric mixture forms a macroscopic precipitate. With a constant core block, the aggregation number decreases with increasing corona block length, as is predicted by scaling models for polymeric micelles with a neutral corona.
Kinetic and equilibrium aspects of three different poly(ethylene oxide) alkylethers (C12E5, C12E7, C14E7) near a flat cellulose surface are studied. The equilibrium adsorption isotherms look very similar for these surfactants, each showing three different regions with increasing surfactant concentration. At low surfactant content both the headgroup and the tail contribute to the adsorption. At higher surface concentrations, lateral attraction becomes prominent and leads to the formation of aggregates on the surface. The general shape of the isotherms and the magnitude of the adsorption resemble mostly those for hydrophilic surfaces, but both the ethylene oxide and the aliphatic segments determine affinity for the surface. The adsorption and desorption kinetics are strongly dependent on surfactant composition. At bulk concentrations below the CMC, the initial adsorption rate is attachment-controlled. Above the CMC, the micellar diffusion coefficient and the micellar dissociation rate play a crucial role. For the most hydrophilic surfactant, C12E7, both parameters are relatively large. In this case, the initial adsorption rate increases with increasing surfactant concentration, also above the CMC. For C12E5 and C14E7 there is no micellar contribution to the initial adsorption rate. The initial desorption kinetics are governed by monomer detachment from the surface aggregates. The desorption rate constants scale with the CMC, indicating an analogy between the surface aggregates and those formed in solution.
Electrostatically driven coassembly of poly(acrylic acid)-block-poly(acrylamide), PAA-b-PAAm, and poly(2-methylvinylpyridinium iodide), P2MVP, leads to formation of micelles in aqueous solutions. Light scattering and small angle neutron scattering experiments have been performed to study the effect of concentration and length of the corona block (N PAAm ) 97, 208, and 417) on micellar characteristics. Small angle neutron scattering curves were analyzed by generalized indirect Fourier transformation and model fitting. All scattering curves could be well described with a combination of a form factor for polydisperse spheres in combination with a hard sphere structure factor for the highest concentrations. Micellar aggregation numbers, shape, and internal structure are relatively independent of concentration for C p < 23.12 g L -1 . The Guinier radius, average micellar radius, hydrodynamic radius, and polydispersity were found to increase with increasing N PAAm . Micellar mass and aggregation number were found to decrease with increasing N PAAm.
Mixed polymeric micelles have been prepared from aqueous solutions of poly(2-(dimethylamino)ethyl methacrylate)-block-poly(glyceryl methacrylate), PDMAEMA45-b-PGMA90, and poly(acrylic acid)-block-poly(acrylamide), PAA42-b-PAAm417, through complex coacervation of the oppositely charged blocks. Rather monodisperse, spherical aggregates are formed with a R h = 15.2 ± 0.4 nm. The extent of chain mixing between poly(acrylic acid) and poly(2-(dimethylamino)ethyl methacrylate) in the micellar core and poly(acrylamide) and poly(glyceryl methacrylate) in the micellar corona has been investigated by 2D 1H NMR NOESY experiments. The presence of cross-peaks for protons in different core and corona blocks indicates that the two blocks are in close proximity (<0.5 nm) and micelles are formed in which both core and corona are mixed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.