This paper presents the design of an 8-element linear array for Adaptive Antenna applications using the Least Mean Square (LMS) algorithm towards improving the directive gain, beam steering capabilities, half-power beam-width, side-lobe level, and bandwidth of array. A conventional patch antenna is optimized to operate at 3.6 GHz (5G applications) with two symmetrical slots and Quarter Wave Transformer for feeding, and this design is extended up to 8 elements using CST Microwave Studio parameterization. The Return Loss (S 11), Directivity, HPBW, and VSWR of the antenna array are observed for the 2, 4, and 8 elements adaptive arrays. The inter-element spacing for resulting eight-element antenna array geometry is optimized to obtain maximum directive gain. This geometry appears promising in improving the directive gain from 7.6 dBi to 15.1 dBi for a single element to eight elements, respectively. Further, the LMS algorithm is used to compute the optimal complex weights, considering different angles for the desired User (+45 • and −45 •) and Interferer (+20 • and −20 •) during MATLAB simulation, and then these optimal weights are fed to antenna elements using CST for beam steering in a different direction. Maxima in the direction of user and nulls in the direction of interferer are obtained using CST software and found closely matching with MATLAB results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.