The removal of Pb(II),
Cd(II), Cu(II), and Zn(II) from aqueous
solutions using (un)modified Serbian interstratified montmorillonite/kaolinite
clay as an adsorbent was investigated. The clay was modified by mechanochemical
activation for different time periods. X-ray diffraction patterns
and particle size distributions were used to characterize the samples.
Batch adsorption studies were conducted to optimize various conditions.
The adsorption equilibrium was established within 60 min, and the
maximum adsorption occurred in the pH range of 4.5–6.5. The
milled clays exhibited greater equilibrium adsorption capacities (q
e) for all of the metals than the raw clay.
A difference in q
e values for clays milled
for 2 and 19 h could be observed only for initial concentrations (C
i) of ≥100 mg dm–3.
This was related to the amorphization (i.e., exfoliation) of 19-h-milled
clay particles. The adsorption equilibrium data of heavy metals on
both raw and modified clays fit the Langmuir equation, although there
were changes in the microstructure of the clay. The mechanochemical
treatment of the clay reduced the amount of adsorbent necessary to
achieve a highly efficient removal of heavy metals by a factor of
5. Thus, the mechanochemically treated interstratified clay can be
considered as an efficient adsorbent for the simultaneous removal
of divalent heavy metals.
Many water utilities, particularly in the developing countries, continue to operate inefficient water distribution systems (WDSs) with a significant amount of water and revenue losses. Various factors, manageable to different extents, contribute to water losses, such as poor infrastructure, high pressures, illegal water use, etc. Whilst the problem of water losses in WDSs is global in scale, solutions need to be tailored to local circumstances due to the various causes of water loss and the mechanisms available to manage them. This paper investigates the potentials of the available pressure management methodologies and their implementation in developing countries, using a case study of a district metering area (DMA) in Kotež-Serbia. The minimal night flow method was applied for assessment of real losses. A particular focus is on assessment of water savings due to reduction of pressures. A total of three methods for estimation of water savings are described and tested against data measured in the DMA under initial and reduced pressures: (i) the method based on Leakage Index (LI) calculations, (ii) the PRESMAC model and (iii) a newly-developed method which is based on the assumption that both leakage and consumption are pressure dependent. The results indicate that the third method leads to the most accurate prediction of the total amount of water savings under reduced pressures, with only 6% difference between measured and estimated volume of saved water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.