In this article the Tomographic Iterative GPU-based Reconstruction (TIGRE) Toolbox, a MATLAB/ CUDA toolbox for fast and accurate 3D x-ray image reconstruction, is presented. One of the key features is the implementation of a wide variety of iterative algorithms as well as FDK, including a range of algorithms in the SART family, the Krylov subspace family and a range of methods using total variation regularization. Additionally, the toolbox has GPU-accelerated projection and back projection using the latest techniques and it has a modular design that facilitates the implementation of new algorithms. We present an overview of the structure and techniques used in the creation of the toolbox, together with two usage examples. The TIGRE Toolbox is released under an open source licence, encouraging people to contribute.
Purpose: We developed a target-based cone beam computed tomography (CBCT) imaging framework for optimizing an unconstrained three dimensional (3D) source-detector trajectory by incorporating prior image information. Our main aim is to enable a CBCT system to provide topical information about the target using a limited angle noncircular scan orbit with a minimal number of projections. Such a customized trajectory should include enough information to sufficiently reconstruct a particular volume of interest (VOI) under kinematic constraints, which may result from the patient size or additional surgical or radiation therapy-related equipment. Methods: A patient-specific model from a prior diagnostic computed tomography (CT) volume is used as a digital phantom for CBCT trajectory simulations. Selection of the best projection views is accomplished through maximizing an objective function fed by the imaging quality provided by different x-ray positions on the digital phantom data. The final optimized trajectory includes a limited angular range and a minimal number of projections which can be applied to a C-arm device capable of general source-detector positioning. The performance of the proposed framework is investigated in experiments involving an in-house-built box phantom including spherical targets as well as an Alderson-Rando head phantom. In order to quantify the image quality of the reconstructed image, we use the average full-width-half-maximum (FWHM avg) for the spherical target and feature similarity index (FSIM), universal quality index (UQI), and contrast-to-noise ratio (CNR) for an anatomical target. Results: Our experiments based on both the box and head phantom showed that optimized trajectories could achieve a comparable image quality in the VOI with respect to the standard C-arm circular CBCT while using approximately one quarter of projections. We achieved a relative deviation <7% for FWHM avg between the reconstructed images from the optimized trajectories and the standard Carm CBCT for all spherical targets. Furthermore, for the anatomical target, the relative deviation of FSIM, UQI, and CNR between the reconstructed image related to the proposed trajectory and the standard C-arm circular CBCT was found to be 5.06%, 6.89%, and 8.64%, respectively. We also compared our proposed trajectories to circular trajectories with equivalent angular sampling as the optimized trajectories. Our results show that optimized trajectories can outperform simple partial
Cone-beam computed tomography (CBCT) imaging is becoming increasingly important for a wide range of applications such as image-guided surgery, image-guided radiation therapy as well as diagnostic imaging such as breast and orthopaedic imaging. The potential benefits of non-circular source-detector trajectories was recognized in early work to improve the completeness of CBCT sampling and extend the field of view (FOV). Another important feature of interventional imaging is that prior knowledge of patient anatomy such as a preoperative CBCT or prior CT is commonly available. This provides the opportunity to integrate such prior information into the image acquisition process by customized CBCT source-detector trajectories. Such customized trajectories can be designed in order to optimize task-specific imaging performance, providing intervention or patient-specific imaging settings. The recently developed robotic CBCT C-arms as well as novel multi-source CBCT imaging systems with additional degrees of freedom provide the possibility to largely expand the scanning geometries beyond the conventional circular source-detector trajectory. This recent development has inspired the research community to innovate enhanced image quality by modifying image geometry, as opposed to hardware or algorithms. The recently proposed techniques in this field facilitate image quality improvement, FOV extension, radiation dose reduction, metal artifact reduction as well as 3D imaging under kinematic constraints. Because of the great practical value and the increasing importance of CBCT imaging in image-guided therapy for clinical and preclinical applications as well as in industry, this paper focuses on the review and discussion of the available literature in the CBCT trajectory optimization field. To the best of our knowledge, this paper is the first study that provides an exhaustive literature review regarding customized CBCT algorithms and tries to update the community with the clarification of in-depth information on the current progress and future trends.
There are a number of powerful total variation (TV) regularization methods that have great promise in limited data cone-beam CT reconstruction with an enhancement of image quality. These promising TV methods require careful selection of the image reconstruction parameters, for which there are no well-established criteria. This paper presents a comprehensive evaluation of parameter selection in a number of major TV-based reconstruction algorithms. An appropriate way of selecting the values for each individual parameter has been suggested. Finally, a new adaptive-weighted projection-controlled steepest descent (AwPCSD) algorithm is presented, which implements the edge-preserving function for CBCT reconstruction with limited data. The proposed algorithm shows significant robustness compared to three other existing algorithms: ASD-POCS, AwASD-POCS and PCSD. The proposed AwPCSD algorithm is able to preserve the edges of the reconstructed images better with fewer sensitive parameters to tune.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.