Understanding the ways of interaction of a drug with a biological target is crucial in the pharmacology field. One methodology that allows the simulation of new drugs under in vitro conditions is the classical molecular dynamics (MD) method. However, MD simulations in systems containing metallodrugs are challenging due to the lack of specific parameters found in the literature. In this work, we propose and model a new possible anticancer platinum(II) complex: cis‐dichloro(2‐aminomethylpyridine)platinum(II) bonded to 2‐(4′‐amino‐2′‐hydroxyphenyl)benzothiazole (AHBT). The developed model consists of a new set of AMBER force field parameters based on density functional theory (DFT) calculations. The extensive validation of the parameter set shows that it adequately describes the structural properties of the complex. Overall, we expect this work to contribute significantly to future MD simulations of Pt(II) complexes in biological targets that are still not well explored, mainly due to the few parameters found in the literature.
Alzheimer's disease is known to be a chronic disease, with an estimated prevalence of about 10-30%, considering the population over 60 years of age. Most patients with this disorder (> 95%) present the sporadic form, being characterized by a late onset (80-90 years of age), and it is the consequence of the failure to clear the amyloid-β (Aβ) peptide from the interstices of the brain. Significant numbers of genetic risk factors for the sporadic disease have been researched. Some existing drugs for Alzheimer's disease provide symptomatic benefit for up to 12 months, but there are no approved disease- modifying therapies. In this line, a complementary strategy based on repositioning drugs which are approved for the treatment of other disorders could be interesting. It is noteworthy the fact that some clinical trials indicate that several classes of drugs own potent and beneficial effects on the Alzheimer's disease treatment. In this present work, we present the details and evaluation of these alternative treatments. It has highlighted several compounds with relevant evidence for this purpose, which deserves further investigation to clarify optimal treatment conditions in the clinical trials of patients with Alzheimer's disease.
In the present work, we performed a complementary quantum mechanical (QM) study to describe the mechanism by which deprotonated pralidoxime (2-PAM) could reactivate human (Homo sapiens sapiens) acetylcholinesterase (HssAChE) inhibited by the nerve agent VX. Such a reaction is proposed to occur in subsequent addition–elimination steps, starting with a nucleophile bimolecular substitution (SN2) mechanism through the formation of a trigonal bipyramidal transition state (TS). A near attack conformation (NAC), obtained in a former study using molecular mechanics (MM) calculations, was taken as a starting point for this project, where we described the possible formation of the TS. Together, this combined QM/MM study on AChE reactivation shows the feasibility of the reactivation occurring via attack of the deprotonated form of 2-PAM against the Ser203-VX adduct of HssAChE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.