Purpose The existing literature expresses a strong need to develop tools that support the manufacturing reshoring decision-making process. This paper aims to examine the suitability of analytical hierarchy process (AHP)-based tools for initial screening of manufacturing reshoring decisions. Design/methodology/approach Two AHP-based tools for the initial screening of manufacturing reshoring decisions are developed. The first tool is based on traditional AHP, while the second is based on fuzzy-AHP. Six high-level and holistic reshoring criteria based on competitive priorities were identified through a literature review. Next, a panel of experts from a Swedish manufacturing company was involved in the overall comparison of the criteria. Based on this comparison, priority weights of the criteria were obtained through a pairwise analysis. Subsequently, the priority weights were used in a weighted-sum manner to evaluate 20 reshoring scenarios. Afterwards, the outputs from the traditional AHP and fuzzy-AHP tools were compared to the opinions of the experts. Finally, a sensitivity analysis was performed to evaluate the stability of the developed decision support tools. Findings The research demonstrates that AHP-based support tools are suitable for the initial screening of manufacturing reshoring decisions. With regard to the presented set of criteria and reshoring scenarios, both traditional AHP and fuzzy-AHP are shown to be consistent with the experts' decisions. Moreover, fuzzy-AHP is shown to be marginally more reliable than traditional AHP. According to the sensitivity analysis, the order of importance of the six criteria is stable for high values of weights of cost and quality criteria. Research limitations/implications The limitation of the developed AHP-based tools is that they currently only include a limited number of high-level decision criteria. Therefore, future research should focus on adding low-level criteria to the tools using a multi-level architecture. The current research contributes to the body of literature on the manufacturing reshoring decision-making process by addressing decision-making issues in general and by demonstrating the suitability of two decision support tools applied to the manufacturing reshoring field in particular. Practical implications This research provides practitioners with two decision support tools for the initial screening of manufacturing reshoring decisions, which will help managers optimize their time and resources on the most promising reshoring alternatives. Given the complex nature of reshoring decisions, the results from the fuzzy-AHP are shown to be slightly closer to those of the experts than traditional AHP for initial screening of manufacturing relocation decisions. Originality/value This paper describes two decision support tools that can be applied for the initial screening of manufacturing reshoring decisions while considering six high-level and holistic criteria. Both support tools are applied to evaluate 20 identical manufacturing reshoring scenarios, allowing a comparison of their output. The sensitivity analysis demonstrates the relative importance of the reshoring criteria.
This paper presents an ontology which has been developed to represent the requirements of a software component pertaining to an embedded system in the avionics industry. The ontology was built based on the software requirements documents and was used to support advanced methods in the subsequent stages of the software development process. In this paper it is described the process that was used to build the ontology. Two pertinent quality measures that were applied to the ontology, i.e. usability and applicability, are also described, as well as the methods used to evaluate the quality measures and the result of these evaluations.
Abstract. Testing of a software system is resource-consuming activity. One of the promising ways to improve the efficiency of the software testing process is to use ontologies for testing. This paper presents an approach to test case generation based on the use of an ontology and inference rules. The ontology represents requirements from a software requirements specification, and additional knowledge about components of the software system under development. The inference rules describe strategies for deriving test cases from the ontology. The inference rules are constructed based on the examination of the existing test documentation and acquisition of knowledge from experienced software testers. The inference rules are implemented in Prolog and applied to the ontology that is translated from OWL functional-style syntax to Prolog syntax. The first experiments with the implementation showed that it was possible to generate test cases with the same level of detail as the existing, manually produced, test cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.