Generating flow forecasts with uncertainty limits from rain gauge inputs in sewer systems require simple models with identifiable parameters that can adequately describe the stochastic phenomena of the system. In this paper, a simple grey-box model is proposed that is attractive for both forecasting and control purposes. The grey-box model is based on stochastic differential equations and a key feature is the separation of the total noise into process and measurement noise. The grey-box approach is properly introduced and hypothesis regarding the noise terms are formulated. Three different hypotheses for the diffusion term are investigated and compared: one that assumes additive diffusion; one that assumes state proportional diffusion; and one that assumes state exponentiated diffusion. To implement the state dependent diffusion terms Itô's formula and the Lamperti transform are applied. It is shown that an additive diffusion noise term description leads to a violation of the physical constraints of the system, whereas a state dependent diffusion noise avoids this problem and should be favoured. It is also shown that a logarithmic transformation of the flow measurements secures positive lower flow prediction limits, because the observation noise is proportionally scaled with the modelled output. Finally it is concluded that a state proportional diffusion term best and adequately describes the one-step flow prediction uncertainty, and a proper description of the system noise is important for ascertaining the physical parameters in question.
Monitoring of flows in sewer systems is increasingly applied to calibrate urban drainage models used for long term simulation. However, most often models are calibrated without considering the uncertainties. The GLUE methodology is here applied to assess parameter and flow simulation uncertainty using a simplified lumped sewer model that accounts for three separate flow contributions: wastewater, fast runoff from paved areas, and slow infiltrating water from permeable areas. Recently the GLUE methodology has been critised for generating prediction limits without statistical coherence and consistency and for the subjectivity in the choice of a threshold value to distinguish "behavioral" from "non-behavioral" parameter sets. In this paper we examine how well the GLUE methodology performs when the behavioural parameter sets deduced from a calibration period are applied to generate prediction bounds in validation periods. By retaining an increasing number of parameter sets we aim at obtaining consistency between the GLUE generated 90% prediction limits and the actual containment ratio (CR) in calibration. Due to the large uncertainties related to spatio-temporal rain variability during heavy convective rain events, flow measurement errors, as well as model limitations, it was not possible to obtain an overall CR of more than 80%. However, the GLUE generated prediction limits still proved rather consistent, since the overall CRs obtained in calibration corresponded well with the overall CRs obtained in validation periods for all proportions of retained parameter sets evaluated. When focusing on wet and dry weather periods separately, some inconsistencies were however found between calibration and validation and we address here some of the reasons why we should not expect the coverage of the prediction limits to be identical in calibration and validation periods in real-world applications. The large uncertainties propagate to the parameters and result in wide posterior parameter limits, that cannot be used for interpretation of e.g. the relative size of paved area vs. the size of infiltrating area. From this study it seems crucial to obtain more representative rain inputs and more accurate flow observations to reduce parameter and model simulation uncertainty
Abstract. Monitoring of flows in sewer systems is increasingly applied to calibrate urban drainage models used for long-term simulation. However, most often models are calibrated without considering the uncertainties. The generalized likelihood uncertainty estimation (GLUE) methodology is here applied to assess parameter and flow simulation uncertainty using a simplified lumped sewer model that accounts for three separate flow contributions: wastewater, fast runoff from paved areas, and slow infiltrating water from permeable areas. Recently GLUE methodology has been critisised for generating prediction limits without statistical coherence and consistency and for the subjectivity in the choice of a threshold value to distinguish "behavioural" from "nonbehavioural" parameter sets. In this paper we examine how well the GLUE methodology performs when the behavioural parameter sets deduced from a calibration period are applied to generate prediction bounds in validation periods. By retaining an increasing number of parameter sets we aim at obtaining consistency between the GLUE generated 90 % prediction limits and the actual containment ratio (CR) in calibration. Due to the large uncertainties related to spatiotemporal rain variability during heavy convective rain events, flow measurement errors, possible model deficiencies as well as epistemic uncertainties, it was not possible to obtain an overall CR of more than 80 %. However, the GLUE generated prediction limits still proved rather consistent, since the overall CRs obtained in calibration corresponded well with the overall CRs obtained in validation periods for all proportions of retained parameter sets evaluated. When focusing on wet and dry weather periods separately, some inconsistencies were however found between calibration and validation and we address here some of the reasons why we should not expect the coverage of the prediction limits to be identical in calibration and validation periods in real-world applications. The large uncertainties result in wide posterior parameter limits, that cannot be used for interpretation of, for example, the relative size of paved area vs. the size of infiltrating area. We should therefore try to learn from the significant discrepancies between model and observations from this study, possibly by using some form of non-stationary error correction procedure, but it seems crucial to obtain more representative rain inputs and more accurate flow observations to reduce parameter and model simulation uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.