BackgroundOnly limited data exist on lactation as an exposure source of persistent perfluorinated chemicals (PFCs) for children.ObjectivesWe studied occurrence and levels of PFCs in human milk in relation to maternal serum together with the temporal trend in milk levels between 1996 and 2004 in Sweden. Matched, individual human milk and serum samples from 12 primiparous women in Sweden were analyzed together with composite milk samples (25–90 women/year) from 1996 to 2004.ResultsEight PFCs were detected in the serum samples, and five of them were also above the detection limits in the milk samples. Perfluorooctanesulfonate (PFOS) and perfluorohexanesulfonate (PFHxS) were detected in all milk samples at mean concentrations of 0.201 ng/mL and 0.085 ng/mL, respectively. Perfluorooctanesulfonamide (PFOSA), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) were detected less frequently.DiscussionThe total PFC concentration in maternal serum was 32 ng/mL, and the corresponding milk concentration was 0.34 ng/mL. The PFOS milk level was on average 1% of the corresponding serum level. There was a strong association between increasing serum concentration and increasing milk concentration for PFOS (r2 = 0.7) and PFHxS (r2 = 0.8). PFOS and PFHxS levels in composite milk samples were relatively unchanged between 1996 and 2004, with a total variation of 20 and 32% coefficient of variation, respectively.ConclusionThe calculated total amount of PFCs transferred by lactation to a breast-fed infant in this study was approximately 200 ng/day. Lactation is a considerable source of exposure for infants, and reference concentrations for hazard assessments are needed.
We investigated temporal trends of blood serum levels of 13 perfluorinated alkyl acids (PFAAs) and perfluorooctane sulfonamide (FOSA) in primiparous women (N = 413) from Uppsala County, Sweden, sampled 3 weeks after delivery 1996-2010. Levels of the short-chain perfluorobutane sulfonate (PFBS) and perfluorohexane sulfonate (PFHxS) increased 11%/y and 8.3%/y, respectively, and levels of the long-chain perfluorononanoate (PFNA) and perfluorodecanoate (PFDA) increased 4.3%/y and 3.8%/y, respectively. Concomitantly, levels of FOSA (22%/y), perfluorooctane sulfonate (PFOS, 8.4%/y), perfluorodecane sulfonate (PFDS, 10%/y), and perfluorooctanoate (PFOA, 3.1%/y) decreased. Thus, one or several sources of exposure to the latter compounds have been reduced or eliminated, whereas exposure to the former compounds has recently increased. We explored if maternal levels of PFOS, PFOA, and PFNA during the early nursing period are representative for the fetal development period, using serial maternal serum samples, including cord blood (N = 19). PFAA levels in maternal serum sampled during pregnancy and the nursing period as well as in cord blood were strongly correlated. Strongest correlations between cord blood levels and maternal levels were observed for maternal serum sampled shortly before or after the delivery (r = 0.70-0.89 for PFOS and PFOA). A similar pattern was observed for PFNA, although the correlations were less strong due to levels close to the method detection limit in cord blood.
BACKGROUND: Firefighting foam-contaminated ground water, which contains high levels of perfluoroalkyl substances (PFAS), is frequently found around airports. In 2018 it was detected that employees at a municipal airport in northern Sweden had been exposed to high levels of short-chain PFAS along with legacy PFAS (i.e., PFOA, PFHxS, and PFOS) through drinking water. OBJECTIVES: In this study, we aimed to describe the PFAS profile in drinking water and biological samples (paired serum and urine) and to estimate serum half-lives of the short-chain PFAS together with legacy PFAS. METHODS: Within 2 weeks after provision of clean water, blood sampling was performed in all 26 airport employees. Seventeen of them were then followed up monthly for 5 months. PFHxA, PFHpA, PFBS, PFPeS, and PFHpS together with legacy PFAS in water and biological samples were quantified using LC/MS/MS. Half-lives were estimated by assuming one compartment, first-order elimination kinetics. RESULTS: The proportions of PFHxA, PFHpA, and PFBS were higher in drinking water than in serum. The opposite was found for PFHxS and PFOS. The legacy PFAS accounted for about 50% of total PFAS in drinking water and 90% in serum. Urinary PFAS levels were very low compared with serum. PFBS showed the shortest half-life {average 44 d [95% confidence interval (CI): 37, 55 d]}, followed by PFHpA [62 d (95% CI: 51, 80 d)]. PFPeS and PFHpS showed average half-lives as 0.63 and 1.46 y, respectively. Branched PFOS isomers had average half-lives ranging from 1.05 to 1.26 y for different isomers. PFOA, PFHxS, and linear PFOS isomers showed average half-lives of 1.77, 2.87, and 2.93 y, respectively. DISCUSSION: A general pattern of increasing half-lives with increasing chain length was observed. Branched PFOS isomers had shorter half-lives than linear PFOS isomers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.