It is well established that tooth extraction is followed by a reduction of the buccolingual as well as the apicocoronal dimension of the alveolar ridge. Different measures have been taken to avoid this bone modelling process, such as immediate implant placement and bone grafting, but in most cases with disappointing results. One fundamental principle of bone physiology is the adaptation of bone mass and bone structure to the levels and frequencies of strain. In the present article, it is shown that the reduction of the alveolar ridge dimensions after tooth extraction is a natural consequence of this physiological principle.
These findings suggest that increased static bone strain creates higher implant stability at the time of insertion, and this increased stability is maintained throughout the observed period.
Broad distribution of excessive stress in the FEA correlated to the clinical cases, and marginal bone loss in these cases may be associated with mechanical alterations. To avoid unnecessary complications, selection of an abutment-level setup is strongly suggested.
The effect of micro threads was prominent in the femur suggesting that micro threads promote bone formation. The stress distribution supported by the micro threads was especially effective in the cancellous bone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.