The utilization of macromolecules in therapy of cancer and other diseases is becoming increasingly relevant. Recent advances in molecular biology and biotechnology have made it possible to improve targeting and design of cytotoxic agents, DNA complexes, and other macromolecules for clinical applications. To achieve the expected biological effect of these macromolecules, in many cases, internalization to the cell cytosol is crucial. At an intracellular level, the most fundamental obstruction for cytosolic release of the therapeutic molecule is the membrane-barrier of the endocytic vesicles. Photochemical internalization (PCI) is a novel technology for release of endocytosed macromolecules into the cytosol. The technology is based on the use of photosensitizers located in endocytic vesicles that upon activation by light induces a release of macromolecules from their compartmentalization in endocytic vesicles. PCI has been shown to potentiate the biological activity of a large variety of macromolecules and other molecules that do not readily penetrate the plasma membrane, including type I ribosome-inactivating proteins (RIPs), gene-encoding plasmids, adenovirus, oligonucleotides, and the chemotherapeutic bleomycin. PCI has also been shown to enhance the treatment effect of targeted therapeutic macromolecules. The present protocol describes PCI of an epidermal growth factor receptor (EGFR)-targeted protein toxin (Cetuximab-saporin) linked via streptavidin-biotin for screening of targeted toxins as well as PCI of nonviral polyplex-based gene therapy. Although describing in detail PCI of targeted protein toxins and DNA polyplexes, the methodology presented in these protocols are also applicable for PCI of other gene therapy vectors (e.g., viral vectors), peptide nucleic acids (PNA), small interfering RNA (siRNA), polymers, nanoparticles, and some chemotherapeutic agents.
SummaryA photosensitizer is defined as a chemical entity, which upon absorption of light induces a chemical or physical alteration of another chemical entity. Some photosensitizers are utilized therapeutically such as in photodynamic therapy (PDT) and for diagnosis of cancer (fluorescence diagnosis, FD). PDT is approved for several cancer indications and FD has recently been approved for diagnosis of bladder cancer. The photosensitizers used are in most cases based on the porphyrin structure. These photosensitizers generally accumulate in cancer tissues to a higher extent than in the surrounding tissues and their fluorescing properties may be utilized for cancer detection. The photosensitizers may be chemically synthesized or induced endogenously by an intermediate in heme synthesis, 5-aminolevulinic acid (5-ALA) or 5-ALA esters. The therapeutic effect is based on the formation of reactive oxygen species (ROS) upon activation of the photosensitizer by light. Singlet oxygen is assumed to be the most important ROS for the therapeutic outcome. The fluorescing properties of the photosenisitizers can be used to evaluate their intracellular localization and treatment effects. Some photosensitizers localize intracellularly in endocytic vesicles and upon light exposure induce a release of the contents of these vesicles, including externally added macromolecules, into the cytosol. This is the basis for a novel method for macromolecule activation, named photochemical internalization (PCI). PCI has been shown to potentiate the biological activity of a large variety of macromolecules and other molecules that do not readily penetrate the plasma membrane, including type I ribosome-inactivating proteins, immunotoxins, gene-encoding plasmids, adenovirus, peptide-nucleic acids and the chemotherapeutic drug bleomycin. The background and present status of PDT, FD and PCI are reviewed.
The successful therapeutic application of small interfering RNA (siRNA) largely relies on the development of safe and effective delivery systems that are able to guide the siRNA therapeutics to the cytoplasm of the target cell. In this report, biodegradable cationic dextran nanogels are engineered by inverse emulsion photopolymerization and their potential as siRNA carriers is evaluated. The nanogels are able to entrap siRNA with a high loading capacity, based on electrostatic interaction. Confocal microscopy and flow cytometry analysis reveal that large amounts of siRNA‐loaded nanogels can be internalized by HuH‐7 human hepatoma cells without significant cytotoxicity. Following their cellular uptake, it is found that the nanogels are mainly trafficked towards the endolysosomes. The influence of two different strategies to enhance endosomal escape on the extent of gene silencing is investigated. It is found that both the application of photochemical internalization (PCI) and the use of an influenza‐derived fusogenic peptide (diINF‐7) can significantly improve the silencing efficiency of siRNA‐loaded nanogels. Furthermore, it is shown that an efficient gene silencing requires the degradation of the nanogels. As the degradation kinetics of the nanogels can easily be tailored, these particles show potential for intracellular controlled release of short interfering RNA.
The development of methods for specific delivery of drugs is an important issue for many cancer therapy approaches. Most of macromolecular drugs are taken into the cell through endocytosis and, being unable to escape from endocytic vesicles, eventually are degraded there, which hinders their therapeutic usefulness. We have developed a method, called photochemical internalization, based on light-induced photochemical reactions, disrupting endocytic vesicles specifically within illuminated sites e.g. tumours. Here we present a new drug delivery concept based on photochemical internalization-principle -photochemical disruption of endocytic vesicles before delivery of macromolecules, leading to an instant endosomal release instead of detrimental stay of the molecules in endocytic vesicles. Previously we have shown that illumination applied after the treatment with macromolecules substantially improved their biological effect both in vitro and in vivo. Here we demonstrate that exposure to light before delivery of protein toxin gelonin improves gelonin effect in vitro much more than light after. However, in vitro transfection with reporter genes delivered by non-viral and adenoviral vectors is increased more than 10-and six-fold, respectively, by both photochemical internalization strategies. The possible cellular mechanisms involved, and the potential of this new method for practical application of photochemical internalization concept in cancer therapy are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.