The chaperone protein PapD mediates assembly of pili in Escherichia coli. Its polypeptide chain folds into two immunoglobulin-type domains that are homologous in sequence to the human lymphocyte differentiation antigen Leu-1/CD5.
Detailed structural analyses revealed a family of periplasmic chaperones in Gram‐negative prokaryotes which are structurally and possibly evolutionarily related to the immunoglobulin superfamily and assist in the assembly of adhesive pili. The members of this family have similar structures consistent with the overall topology of an immunoglobulin fold. Seven pilus chaperone sequences from Escherichia coli, Haemophilus influenzae and Klebsiella pneumoniae were aligned and their consensus sequence was superimposed onto the known three‐dimensional structure of PapD, a representative member of the family. The molecular details of the conserved and variable structural motifs in this family of periplasmic chaperones give important insight into their structure, function, mechanism of action and evolutionary relationship with the immunoglobulin superfamily.
A silicon chip-based electric detector coupled to bead-based sandwich hybridization (BBSH) is presented as an approach to perform rapid analysis of specific nucleic acids. A microfluidic platform incorporating paramagnetic beads with immobilized capture probes is used for the bio-recognition steps. The protocol involves simultaneous sandwich hybridization of a single-stranded nucleic acid target with the capture probe on the beads and with a detection probe in the reaction solution, followed by enzyme labeling of the detection probe, enzymatic reaction, and finally, potentiometric measurement of the enzyme product at the chip surface. Anti-DIG-alkaline phosphatase conjugate was used for the enzyme labeling of the DIG-labeled detection probe. p-Aminophenol phosphate (pAPP) was used as a substrate. The enzyme reaction product, p-aminophenol (pAP), is oxidized at the anode of the chip to quinoneimine that is reduced back to pAP at the cathode. The cycling oxidation and reduction of these compounds result in a current producing a characteristic signal that can be related to the concentration of the analyte. The performance of the different steps in the assay was characterized using in vitro synthesized RNA oligonucleotides and then the instrument was used for analysis of 16S rRNA in Escherichia coli extract. The assay time depends on the sensitivity required. Artificial RNA target and 16S rRNA, in amounts ranging from 10(11) to 10(10) molecules, were assayed within 25 min and 4 h, respectively.
Lignin is believed to be synthesized by oxidative coupling of 4-hydroxyphenylpropanoids. In native lignin there are some types of reduced structures that cannot be explained solely by oxidative coupling. In the present work we showed via biomimetic model experiments that nicotinamide adenine dinucleotide (NADH), in an uncatalyzed process, reduced a beta-aryl ether quinone methide to its benzyl derivative. A number of other biologically significant reductants, including the enzyme cellobiose dehydrogenase, failed to produce the reduced structures. Synthetic dehydrogenation polymers of coniferyl alcohol synthesized (under oxidative conditions) in the presence of the reductant NADH produced the same kind of reduced structures as in the model experiment, demonstrating that oxidative and reductive processes can occur in the same environment, and that reduction of the in situ-generated quinone methides was sufficiently competitive with water addition. In situ reduction of beta-beta-quinone methides was not achieved in this study. The origin of racemic benzyl structures in lignins therefore remains unknown, but the potential for simple chemical reduction is demonstrated here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.