Fluorescence data of replicate samples obtained from different fluorescence spectrometers or by the same spectrometer but with different instrument settings can have great intensity differences. In order to compare such data an intensity calibration must be applied. Here we explain a simple calibration method for fluorescence intensity using only the integrated area of a water Raman peak. By applying this method to data from three different instruments, we show that it is possible to remove instrument-dependent intensity factors, and we present results on a unified scale of Raman units. The method presented is a rapid and simple approach suitable for routine measurements with no need for hazardous chemicals.
BackgroundAnalysis of data from multiple sources has the potential to enhance knowledge discovery by capturing underlying structures, which are, otherwise, difficult to extract. Fusing data from multiple sources has already proved useful in many applications in social network analysis, signal processing and bioinformatics. However, data fusion is challenging since data from multiple sources are often (i) heterogeneous (i.e., in the form of higher-order tensors and matrices), (ii) incomplete, and (iii) have both shared and unshared components. In order to address these challenges, in this paper, we introduce a novel unsupervised data fusion model based on joint factorization of matrices and higher-order tensors.ResultsWhile the traditional formulation of coupled matrix and tensor factorizations modeling only shared factors fails to capture the underlying structures in the presence of both shared and unshared factors, the proposed data fusion model has the potential to automatically reveal shared and unshared components through modeling constraints. Using numerical experiments, we demonstrate the effectiveness of the proposed approach in terms of identifying shared and unshared components. Furthermore, we measure a set of mixtures with known chemical composition using both LC-MS (Liquid Chromatography - Mass Spectrometry) and NMR (Nuclear Magnetic Resonance) and demonstrate that the structure-revealing data fusion model can (i) successfully capture the chemicals in the mixtures and extract the relative concentrations of the chemicals accurately, (ii) provide promising results in terms of identifying shared and unshared chemicals, and (iii) reveal the relevant patterns in LC-MS by coupling with the diffusion NMR data.ConclusionsWe have proposed a structure-revealing data fusion model that can jointly analyze heterogeneous, incomplete data sets with shared and unshared components and demonstrated its promising performance as well as potential limitations on both simulated and real data.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2105-15-239) contains supplementary material, which is available to authorized users.
In many disciplines, data from multiple sources are acquired and jointly analyzed for enhanced knowledge discovery. For instance, in metabolomics, different analytical techniques are used to measure biological fluids in order to identify the chemicals related to certain diseases. It is widely-known that, some of these analytical methods, e.g., LC-MS (Liquid Chromatography - Mass Spectrometry) and NMR (Nuclear Magnetic Resonance) spectroscopy, provide complementary data sets and their joint analysis may enable us to capture a larger proportion of the complete metabolome belonging to a specific biological system. Fusing data from multiple sources has proved useful in many fields including bioinformatics, signal processing and social network analysis. However, identification of common (shared) and individual (unshared) structures across multiple data sets remains a major challenge in data fusion studies. With a goal of addressing this challenge, we propose a novel unsupervised data fusion model. Our contributions are two-fold: (i) We formulate a data fusion model based on joint factorization of matrices and higher-order tensors, which can automatically reveal common and individual components. (ii) We demonstrate that the proposed approach provides promising results in joint analysis of metabolomics data sets consisting of fluorescence and NMR measurements of plasma samples in terms of separation of colorectal cancer patients from controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.