a b s t r a c tThis study focuses on the detection and quantification of extra-virgin olive oil adulteration with different edible oils using mid-infrared (IR) spectroscopy with chemometrics. Mid-IR spectra were manipulated with wavelet compression previous to principal component analysis (PCA). Detection limit of adulteration was determined as 5% for corn-sunflower binary mixture, cottonseed and rapeseed oils. For quantification of adulteration, mid-IR spectral data were manipulated with orthogonal signal correction (OSC) and wavelet compression before partial least square (PLS) analysis. The results revealed that models predict the adulterants, corn-sunflower binary mixture, cottonseed and rapeseed oils, in olive oil with error limits of 1.04, 1.4 and 1.32, respectively. Furthermore, the data were analysed with a general PCA model and PLS discriminant analysis (PLS-DA) to observe the efficiency of the model to detect adulteration regardless of the type of adulterant oil. In this case, detection limit for adulteration is determined as 10%.
BackgroundAnalysis of data from multiple sources has the potential to enhance knowledge discovery by capturing underlying structures, which are, otherwise, difficult to extract. Fusing data from multiple sources has already proved useful in many applications in social network analysis, signal processing and bioinformatics. However, data fusion is challenging since data from multiple sources are often (i) heterogeneous (i.e., in the form of higher-order tensors and matrices), (ii) incomplete, and (iii) have both shared and unshared components. In order to address these challenges, in this paper, we introduce a novel unsupervised data fusion model based on joint factorization of matrices and higher-order tensors.ResultsWhile the traditional formulation of coupled matrix and tensor factorizations modeling only shared factors fails to capture the underlying structures in the presence of both shared and unshared factors, the proposed data fusion model has the potential to automatically reveal shared and unshared components through modeling constraints. Using numerical experiments, we demonstrate the effectiveness of the proposed approach in terms of identifying shared and unshared components. Furthermore, we measure a set of mixtures with known chemical composition using both LC-MS (Liquid Chromatography - Mass Spectrometry) and NMR (Nuclear Magnetic Resonance) and demonstrate that the structure-revealing data fusion model can (i) successfully capture the chemicals in the mixtures and extract the relative concentrations of the chemicals accurately, (ii) provide promising results in terms of identifying shared and unshared chemicals, and (iii) reveal the relevant patterns in LC-MS by coupling with the diffusion NMR data.ConclusionsWe have proposed a structure-revealing data fusion model that can jointly analyze heterogeneous, incomplete data sets with shared and unshared components and demonstrated its promising performance as well as potential limitations on both simulated and real data.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2105-15-239) contains supplementary material, which is available to authorized users.
Fatty acid composition and mid-infrared spectra of olive oils in combination with chemometric techniques were used in the classiWcation of Turkish olive oils with respect to their varieties, growing location and harvest year. In particular, olive oil samples belonging to Wve diVerent cultivars were obtained from the same orchard in the middle part of Aegean region and two of these varieties were also received from another orchard in northern part of the same region of Turkey in two consecutive harvest years. Evaluation of nine diVerent fatty acid compositions with principal component analysis revealed clear diVerentiation with respect to variety, geographical origin and harvest year. On the other hand, mid-infrared spectra also achieved varietal and seasonal discrimination to some extent, but diVerentiation is not as clear as that obtained using fatty acid compositions.
The metabolic composition of plasma is affected by time passed since the last meal and by individual variation in metabolite clearance rates. Rat plasma in fed and fasted states was analyzed with liquid chromatography quadrupole-time-of-flight mass spectrometry (LC-QTOF) for an untargeted investigation of these metabolite patterns. The dataset was used to investigate the effect of data preprocessing on biomarker selection using three different softwares, MarkerLynxTM, MZmine, XCMS along with a customized preprocessing method that performs binning of m/z channels followed by summation through retention time. Direct comparison of selected features representing the fed or fasted state showed large differences between the softwares. Many false positive markers were obtained from custom data preprocessing compared with dedicated softwares while MarkerLynxTM provided better coverage of markers. However, marker selection was more reliable with the gap filling (or peak finding) algorithms present in MZmine and XCMS. Further identification of the putative markers revealed that many of the differences between the markers selected were due to variations in features representing adducts or daughter ions of the same metabolites or of compounds from the same chemical subclasses, e.g., lyso-phosphatidylcholines (LPCs) and lyso-phosphatidylethanolamines (LPEs). We conclude that despite considerable differences in the performance of the preprocessing tools we could extract the same biological information by any of them. Carnitine, branched-chain amino acids, LPCs and LPEs were identified by all methods as markers of the fed state whereas acetylcarnitine was abundant during fasting in rats.
A previous study has shown effects of the New Nordic Diet (NND) to stimulate weight loss and lower systolic and diastolic blood pressure in obese Danish women and men in a randomized, controlled dietary intervention study. This work demonstrates long-term metabolic effects of the NND as compared with an Average Danish Diet (ADD) in blood plasma and reveals associations between metabolic changes and health beneficial effects of the NND including weight loss. A total of 145 individuals completed the intervention and blood samples were taken along with clinical examinations before the intervention started (week 0) and after 12 and 26 weeks. The plasma metabolome was measured using GC-MS, and the final metabolite table contained 144 variables. Significant and novel metabolic effects of the diet, resulting weight loss, gender, and intervention study season were revealed using PLS-DA and ASCA. Several metabolites reflecting specific differences in the diets, especially intake of plant foods and seafood, and in energy metabolism related to ketone bodies and gluconeogenesis formed the predominant metabolite pattern discriminating the intervention groups. Among NND subjects, higher levels of vaccenic acid and 3-hydroxybutanoic acid were related to a higher weight loss, while higher concentrations of salicylic, lactic, and N-aspartic acids and 1,5-anhydro-d-sorbitol were related to a lower weight loss. Specific gender and seasonal differences were also observed. The study strongly indicates that healthy diets high in fish, vegetables, fruit, and whole grain facilitated weight loss and improved insulin sensitivity by increasing ketosis and gluconeogenesis in the fasting state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.