Image processing involving correlation based filter algorithms have proved extremely useful for image enhancement, feature extraction and recognition, in a wide range of medical applications, but is almost exclusively used with still images due to the amount of computations required by the correlations. In this paper, we present two different practical methods for applying correlation-based algorithms to real-time video images, using hardware accelerated correlation, as well as our results in applying the method to optical venography. The first method employs a GPU accelerated personal computer, while the second method employs an embedded FPGA. We will discuss major difference between the two approaches, and their suitability for clinical use. The system presented detects blood vessels in human forearms in images from NIR camera setup for the use in a clinical environment.
To offer increased security and comfort, advanced driver-assistance systems (ADASs) should consider individual driving styles. Here, we present a system that learns a human's basic driving behavior and demonstrate its use as ADAS by issuing alerts when detecting inconsistent driving behavior. In contrast to much other work in this area, which is based on or obtained from simulation, our system is implemented as a multithreaded parallel central processing unit (CPU)/graphics processing unit (GPU) architecture in a real car and trained with real driving data to generate steering and acceleration control for road following. It also implements a method for detecting independently moving objects (IMOs) for spotting obstacles. Both learning and IMO detection algorithms are data driven and thus improve above the limitations of model-based approaches. The system's ability to imitate the teacher's behavior is analyzed on known and unknown streets, and results suggest its use for steering assistance but limit the use of the acceleration signal to curve negotiation. We propose that this ability to adapt to the driver can lead to better acceptance of ADAS, which is an important sales argument.Index Terms-Advanced individualized driver-assistance system, driving, imitation learning, independently moving object (IMO), real-time system. A DVANCED driver-assistance systems (ADASs) that adapt to the individual driver have high potential in the car industry since they can reduce the risk of accidents while providing a high degree of comfort. Conventional systems are based on a general moment-to-moment assessment of road and driving parameters. To arrive at a judgment of the current Manuscript
In this paper, we describe a real-time vision machine having a stereo camera as input generating visual information on two different levels of abstraction. The system provides visual low-level and mid-level information in terms of dense stereo and optical flow, egomotion, indicating areas with independently moving objects as well as a condensed geometric description of the scene. The system operates at more than 20 Hz using a hybrid architecture consisting of one dual-GPU card and one quad-core CPU. The different processing stages of visual information have rather different characteristics that in some cases make fine-grained parallelization on a GPU less applicable. However, for most of the stages that are not efficiently implementable on a GPU, a coarse parallelization on multiple CPU-cores is applicable. We show that with such hybrid parallelism, we can achieve a speed up of approximately a factor 90 and a reduction of latency of a factor 26 compared to processing on a single CPU-core. Since the vision machine provides generic visual information it can be used in many contexts. Currently it is used in a driver assistance context as well as in two robotic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.