In this paper, we describe a real-time vision machine having a stereo camera as input generating visual information on two different levels of abstraction. The system provides visual low-level and mid-level information in terms of dense stereo and optical flow, egomotion, indicating areas with independently moving objects as well as a condensed geometric description of the scene. The system operates at more than 20 Hz using a hybrid architecture consisting of one dual-GPU card and one quad-core CPU. The different processing stages of visual information have rather different characteristics that in some cases make fine-grained parallelization on a GPU less applicable. However, for most of the stages that are not efficiently implementable on a GPU, a coarse parallelization on multiple CPU-cores is applicable. We show that with such hybrid parallelism, we can achieve a speed up of approximately a factor 90 and a reduction of latency of a factor 26 compared to processing on a single CPU-core. Since the vision machine provides generic visual information it can be used in many contexts. Currently it is used in a driver assistance context as well as in two robotic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.