Recent investigations have focused on the mitochondrion as a direct drug target in the treatment of metabolic diseases (obesity, metabolic syndrome). Relatively few studies, however, have explicitly investigated whether drug therapies aimed at changing behavior by altering central nervous system (CNS) function affect mitochondrial bioenergetics, and none has explored their effect during early neonatal development. The present study was designed to evaluate the effects of chronic treatment of newborn male rats with the selective serotonin reuptake inhibitor fluoxetine on the mitochondrial bioenergetics of the hypothalamus and skeletal muscle during the critical nursing period of development. Male Wistar rat pups received either fluoxetine (Fx group) or vehicle solution (Ct group) from the day of birth until 21 days of age. At 60 days of age, mitochondrial bioenergetics were evaluated. The Fx group showed increased oxygen consumption in several different respiratory states and reduced production of reactive oxygen species, but there was no change in mitochondrial permeability transition pore opening or oxidative stress in either the hypothalamus or skeletal muscle. We observed an increase in glutathione S-transferase activity only in the hypothalamus of the Fx group. Taken together, our results suggest that chronic exposure to fluoxetine during the nursing phase of early rat development results in a positive modulation of mitochondrial respiration in the hypothalamus and skeletal muscle that persists into adulthood. Such long-lasting alterations in mitochondrial activity in the CNS, especially in areas regulating appetite, may contribute to permanent changes in energy balance in treated animals.
Protein restriction during prenatal, postnatal, or in both periods has a close relationship with subsequent development of cardiovascular disease in adulthood. Elevated brain levels of serotonin and its metabolites have been found in malnourished states. The aim in the present study was to investigate whether treatment with fluoxetine (Fx), a selective serotonin reuptake inhibitor, mimics the detrimental effect of low-protein diet during the perinatal period on the male rat heart. Our hypothesis is that increased circulating serotonin as a result of pharmacologic treatment with Fx leads to cardiac dysfunction similar to that observed in protein-restricted rats. Male Wistar rat pups received daily subcutaneous injection of Fx or vehicle from postnatal day 1 to postnatal day 21. Male rats were euthanized at 60 days of age and the following parameters were evaluated in the cardiac tissue: mitochondrial respiratory capacity, respiratory control ratio, reactive oxygen species (ROS) production, mitochondrial membrane potential, and biomarkers of oxidative stress and antioxidant defense. We found that Fx treatment increased mitochondrial respiratory capacity (123%) and membrane potential (212%) and decreased ROS production (55%). In addition we observed an increase in the antioxidant capacity (elevation in catalase activity (5-fold) and glutathione peroxidase (4.6-fold)). Taken together, our results suggest that Fx treatment in the developmental period positively affects the mitochondrial bioenergetics and antioxidant defense in the cardiac tissue.
Previous studies showed that moderate exercise in adult rats enhances neutrophil function, although no studies were performed in juvenile rats. We evaluated the effects of moderate exercise on the neutrophil function in juvenile rats. Viability and neutrophils function were evaluated. Moderate exercise did not impair the viability and mitochondrial transmembrane potential of neutrophils, whereas there was greater reactive oxygen species production (164%; p < 0.001) and phagocytic capacity (29%; p < 0.05). Our results suggest that moderate exercise in juvenile rats improves neutrophil function, similar to adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.