Shipbuilding is going through a period of revitalization, growth and technological advancement. One component of these innovations is to improve welding techniques and materials for optimizing processing time, reducing costs and to improve properties and ship performance. The aim of the present work is to evaluate the welding of microalloyed shipbuilding steel, AH36, using the submerged arc welding (SAW) process with one and two wires. The mechanical properties of the welded joint will be presented using microhardness and Charpy V-notch testing. For metallographic characterization, the base metal and welded joint were etched with 2% Nital and Klemm's I reagent. Scanning electron microscopy, X-ray diffraction and colored etching were used to quantify and verify the presence of martensite and retained austenite, the MA microconstituent. The results obtained from Charpy impact tests and another mechanical test can be correlated with the associated microstructure.
Several researches in welding processes for shipbuilding has been focusing on reducing weight, increasing energy efficiency, improving corrosion resistance and toughness as well as reducing costs and time in the construction of ships. The microalloyed steel AH36 shipbuilding presents a good correlation among structure, mechanical properties and weldability. These features are mainly because reduction in carbon content due to the use of microalloying elements such as V, Nb and Ti, together with the process of steel plates by thermomechanical control process (TMCP), Therefore, the objective of this study is to evaluate the welding of shipbuilding steel AH 36 by submerged arc process with one and two wires. It was utilized tests such as: tensile, bending and hardness tests. The toughness was determined by Charpy V-Notch test. The metallographic characterization was carried out by the following techniques: optical microscopy (OM) and scanning electron microscopy (SEM) and X-Rays diffraction. The results showed that the tensile test for welded joints presented maximum resistance limit of 561 MPa, and the rupture was located in the base metal. Microhardness test showed that the region of coarse grain of heat affected zone, in the tandem submerged arc welding (SAW), presented the hardest region of the welded joint, also the microhardness value in the weld metal was 10% greater than the metal base. Charpy V notch test tests depicted a ductile brittle transition temperature at about-30 ºC. In the same way, the lowest absorbed energy was identified in the weld metal region. Through microstructure characterization it was possible to identify different morphologies of ferrite, pearlite and the small presence of martensite, as well as, the presence of aggregates MA.
The discovery of new metal alloys and the technological advancement in welding processes are key resources for the aerospace industry to obtain cost reduction and better reliability. Thus, welded joints of dissimilar materials such as aluminum and titanium alloys has been explored due to its combined low density and high mechanical performance. Otherwise, welding of dissimilar metals may present deleterious factors to the welded joint as the formation of intermetallic and/or brittle second phase and residual stress. This project investigates the weldability of dissimilar welded joint (Al6013/Ti-6Al-4V) by Laser beam welding. The approach will be done in terms of mechanical properties and microstructural characterization. For this purpose, optimal laser offset from the joint line and the related heat input has been found. It was observed that offset controls the amount of the intermetallic compound layer in the fusion zone. Large pores were observed on the Al side of the weld metal when the offset is zero. The microstructure on the aluminum side consisted of -Al grains and the dispersed precipitates. Heat input and offset also influenced in the volumetric fraction of the precipitates. Martensite α ′ and secondary acicular α phase was found in the titanium side. Furthermore, intermetallic compound of TiAl base phase such as TiAl, Ti3Al4, and Ti2Al3 was formed. Tensile strength of welded joint was 60% of the Al alloy. In addition, for the same offset and higher heat input, there was an increase in the hardness of the interface.
The discovery of new metal alloys and the technological advancement in welding processes are key resources for the aerospace industry to obtain cost reduction and better reliability. Thus, welded joints of dissimilar materials such as aluminum and titanium alloys has been explored due to its combined low density and high mechanical performance. Otherwise, welding of dissimilar metals may present deleterious factors to the welded joint as the formation of intermetallic and/or brittle second phase and residual stress. This project investigates the weldability of dissimilar welded joint (Al6013/Ti-6Al-4V) by Laser beam welding. The approach will be done in terms of mechanical properties and microstructural characterization. For this purpose, optimal laser offset from the joint line and the related heat input has been found. It was observed that offset controls the amount of the intermetallic compound layer in the fusion zone. Large pores were observed on the Al side of the weld metal when the offset is zero. The microstructure on the aluminum side consisted of \(\alpha\)-Al grains and the dispersed precipitates. Heat input and offset also influenced in the volumetric fraction of the precipitates. Martensite \({{\alpha }}^{{\prime }}\) and secondary acicular \({\alpha }\) phase was found in the titanium side. Furthermore, intermetallic compound of TiAl base phase such as TiAl, Ti3Al4, and Ti2Al3 was formed. Tensile strength of welded joint was 60% of the Al alloy. In addition, for the same offset and higher heat input, there was an increase in the hardness of the interface.
Polymer matrix nanocomposites (NMP) have attracted a great interest mainly in the automotive, aerospace and medical industries since they have good mechanical properties, dimensional, thermal and chemical stability, as well as interesting electrical conductivity and cost reduction in the manufacturing process. However, welding of this class of materials presents serious challenges such as improving weldability of the joint and understanding the mechanisms responsible for coalescence. The objective of this work was to evaluate the coalescence of an NMP joint (comprising a PA6 matrix and with nanosilica of different percentages of silicon) using ultrasonic welding, as well as to perform an acoustic approach of the energy dissipation during the welding process. It is concluded that the NMP samples tend to show better coalescence as the percentage of nanosilica increases, up to a certain limit. On the other hand, the higher the content of nanoparticle the smaller the energy absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.