Zeta potential (ZP) is a parameter that expresses the electrochemical equilibrium between particles and liquids like in nanoparticle (NP) colloidal solutions with applications in medicine, pharmaceuticals, chemical production, mineral processing, and water and soil purification. Smoluchowski's theory applies to the ZP particles that are larger the interfacial layer but neglects surface conductivity. The Debye-Hückel theory correctly approximates the concentration of ions in a double layer but fails to account for the dependence of ZP on the concentration of counterions. Determining ZP of NPs is essential to proper NP characterization. For instance, developing well-defined therapeutic-relevant nanoformulations needs information on NPs size, surface charge, stability and agglomeration behaviour. This approach has many practical challenges, from inadequate knowledge of operating standards to sampling, data interpretation and good laboratory practice for the experiments replicability. However, in drug delivery research, very little literature can provide a clear, succinct explanation of these techniques. Looking for specific guidelines to overcome frequently encountered problems during ZP measurements. This article explores factors influencing colloidal particle stability. Measurement criteria such as applied voltage, number of measurements, electrophoretic mobility (EPM), size distribution, surface shape, temperature, viscosity, particle concentration, zeta potential, nanoparticles, colloidal suspension, electrophoretic mobility, and pH.
Objective: The aim of this study was to evaluate the potential application of biodegradable nanoparticles (NPs) containing indocyanine green (ICG) in photodynamic therapy (PDT). Methods: Important parameters, such as particle size and external morphology, were established by dynamic light scattering (DLS) and scanning electron microscopy (SEM). Also, drug encapsulation efficiency and in vitro release behavior were evaluated by spectroscopic methods. Results: The particles are spherical in shape, they exhibit an 817-nm diameter, and they have a low tendency to aggregate. The loading efficiency was 65%. ICG photophysical parameters showed a bathocromic shift in ICG-loaded nanoparticles (ICG-NP). Analysis of the cell P388-D1 in the presence of the ICG-NP by SEM showed that the majority of the nanoparticles were uptaken by phagocytic cells after 2 h of incubation. After laser irradiation photodamage was observed in P388-D1 cells where ICG-NPs had been uptaken by phagocytic cells. Conclusion: Polymeric NPs work as an efficient drug delivery system for PDT drugs, and this approach can be used in the administration of amphiphilic photosensitizers in the treatment of neoplasic cells. 514
UV-vis spectroscopy is an inexpensive, simple, flexible, non-destructive, analytical method appropriate for a wide class of organic compounds and some inorganic species. UV-vis spectrophotometers measure the absorbance or transmittance of light passing through a medium as a function of the wavelength. Chemical engineers apply it for quantitative analysis, to derive liquid phase reaction kinetics, and to identify the mechanism at the molecular scale. High performance liquid chromatography and ultra-high performance liquid chromatography integrate UV-vis detectors to identify and quantify the concentration of compounds in liquid streams. Combining these techniques with mass spectrometry facilitates identifying all species. UV-vis diffuse reflectance spectroscopy is a variant with enhanced scattering properties that measures the properties of solids and powders. A bibliometric analysis of the 10 000 most cited papers referring to UV-vis (2016 and 2017) groups research in four major clusters: nanoparticles and nanostucutres; photocatalysis and water treatment; crystals, complexes, and derivatives; and Ag and Au nanoparticles biological interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.